AD-A232 786

| DTIC FILE COPY |

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Pubiic reporting Burden for this coitection of Intormation s estimated to average ! "our per response, including the time for rev:.
N ewIng nstr '
gatherng and maintaining the data needed, and COMDIETING and reviewing tPe C3tiectio 1 Of information Senaqcommem, regaraing tr?-s bur::!':o:‘s‘,”s:arcmng em‘r.‘ng 3313 scuries)
Zollectian 2t NOrmation. including suggestions for reducing this ourden to Washington Headauarters ervices, Oarmovat:?or nformation Operations s aeborts: 13 10ee 2t wnus
Davis Mighwav. Suite 1204, Artington, VA 22202-4302. and 1o the Ottice of Management and Budget, P3perwork Reduction Project (0704-0188) w.,,,,m;‘z':,d 70583 15 efterson
. -

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPGRT TYPE AND DATES COVERED
FINAL Ol May to 31 Oct 90
#
4. TITLE AND SUBTITLE S. FUNDING NUMBERS
Adaptive Mehtods for Compressible Fluid Dynamics AFOSR-86-0148

61102F 2304/A3

6. AUTHOR(S)

Professor Marsha Berger

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

New York Univeristy
Courant Institute of Mathematical Sciences
251 Mercer Street
New York, NY 10012

AFOSR-86-0148

1. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

-1

| N

APOSR/NK AFOSR.
Bldg 410 :
Bolling AFBDC 20532-8448

-

11. SUPPLEMENTARY NOTES E)"a ’ E (:

12a. DISTRIBUTION/ AVAILABILITY STATEMENT ISTRIBUTION CODE

Approved for public relense;
distritutionunlimited.

Two major research efforts have been supported by this grant. The
first is tne development of an adaptive algorithm for hyperbolic
conservation laws with simple physical geometry. This work is based on
a combination of two approaches - an adaptive mesh refinement technique
that concentrates computational effort where is most needed, and a high
order Godunov method developed for high Mach number compressible

flow. This approach has aided in the resolution of the weak von
Neumann paradox in shock reflection. It was used to perform the first
calculation of Kelvin Helmholtz instability along the slip line in ramp
reflection off an oblique wedge. When combined with other algorithms,
for example, multifluiid tracking, it could categorize refraction
patterns when a shock hits an oblique material interface. When
combined with an elliptic grid generator, it was used to study the
diffraction of a shock over an obstacle. 1In each of these cases, this
approach to time-dependent fluid flow yielded factors of 10 to 100
improvement in efficiency over equivalent fine grid calculation with

uniform resolution.
14. SUBJECT TERMS 15. NUMBER OF PAGES

|

9 .l 3 U 8 O 4 7 16. PRICE CODOE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECIH?V CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
unclassified unclassified unc lassifed SAR

NSN 7540-01-280-5500 Standard Form 298 Rev . 33

P ANSL S liQ. s

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

ADAPTIVE METHODS FOR COMPRESSIBLE FLUID DYNAMICS
AFOSR-86-0148 FINAL REPORT

Marsha J. Berger

Two major research efforts have been supported by this grant. The first is the development of an
adaptive algorithm for hyperbolic conservation laws with simple physical geometry. This work is based on
a combination of two approaches - an adaptive mesh refinement technique that concentrates computational
effort where it is most nceded, and a high order Godunov method developed for high Mach number
compressible flow. This appwoach has aided in the resolution of the weak von Neumann paradox in shock
reflection. It was used to perform the first calculation of Kelvin Helmholtz instability along the slip line in
ramp reflection off an oblique wedge. When combined with other algorithms, for example, multiftuid track-
ing, it was used to compute the interaction of a supemova remnant with an interstellar cloud, and to
categorize refraction patterns when a shock hits an oblique material interface. When combined with an
elliptic grid generator, it was used to study the diffraction of a shock over an obstacle. In each of these

cases, this approach to time-dependent fluid flow yiclded factors of 10 to 100 improvement in efficiency

over cquivalent fine grid calculations with uniform resolution. This work was done in collaboration with /

Prof. Phil Colella, at Berkeley, and Dr. John Bell at Lawrence Livermore Laboratory.

During the period of this grant, the two dimensionat algorithm was developed and a paper was pub-
lished. The code is currently being prepared for release to other users. The algorithm was recently extended
to three dimensions. Due to the simple data structures and the use of nested grids in the same topology as
the coarse grid, this involved little additional algorithm development. The most major change involved the
development of a new fine grid generator. Memory usage for three dimensional calculations is at a prem-
ium. The old (two-dimensional) grid gencrator often resulted in overlapping subgrids or not very efficient
grids (encompassing too many cells that were unnecessarily refined). After extensive experimentation, we
arc now using an algorithm based on cdge detection, borrowed from the computer vision and pattern recog-
nition literature, to do a smart decomposition of the underresolved regions into efficient sub-rectangles.

One paper on this work will soon appear, and another is nearing completion.

The second major effort supported by this grant is the development of a Cartesian grid method to
solve problems in complex geometry. This will use all of the machincry developed above, ie. the high
resolution Godunov methods and adaptive mesh refinement, along with special difference schemes that
need to be developed for the irrcgular cells along the edge of the domain where a grid intersects a solid
body. This work is in collaboration with Prof. Randall Le Veque.

Our first two approaches to the "small ccll” problem at the irregular cells used the large time step
wave ‘propagation method of LeVeque, and the flux redistribution algorithm of Chem and Colella. Prob-
lems with both of these algorithms (reduced stability in the first case, and poor accuracy in the second) led

/

_2.

us to develop a third third approach to the “small cell" problem. We have developed a rotated difference
scheme for use in the normal and tangential directions at each point in the boundary, and are currently
extending it to second order accuracy. In addition to algorithm development, this projects leads naturally
to research into the accuracy of difference schemes on irregular grids. This work has relevance to other
types of approaches to this problem, for example, unstructured mesh algorithms for complex geometries.
Currently we have a two dimensional implementation of a Cartesian mesh algorithm for time-dependent

flow, including an initial implementation of the adaptive mesh refinement algorithm described above.

fon s [
ACOTEI =~r,'

i | (i.".':',";!“—w*”i}" T

R T —

TR
IIPER O

Prc G"Lk;f,q »6/?

Cartesian Meshes and Adaptive Mesh Refinement for Hyperbolic
Partial Differential Equations

Marsha Berger Randall LeVeque
Courant Institute ~ Math Department
251 Mercer St. University of Washington
NY NY 10012 Seattle, WA 98125

ABSTRACT

We describe a Cartesian mesh algorithm with adaptive mesh refinement for com-
puting fluid flows in complicated geometries. Stable boundary conditions are needed at
the irregular cells where the Cartesian mesh intersects the body. We develop a difference
scheme that is stable even when these irregular cells are orders of magnitude smaller than
the regular cells. We illustrate its performance with some computational examples solv-

ing the two dimensional Euler equations for inviscid flow.

Introduction

We describe a Cartesian mesh method to solve fluid flow problems in complicated geometries. In
this approach, we keep a uniform rectangular (Cartesian) grid and allow the solid boundary to intersect the
grid cells in an essentially arbitrary way. Cartesian meshes are an appealing way to simplify the grid gen-
eration problem for complex domains. Muitiply connected domains and irregular geometries are only

slightly more complicated than a simpie domain.

Cartesian meshes have by and large been overlooked in favor of body-fitted meshes or the more
recently popular unstructured meshes, but they deserve much more attention. Cartesian meshes have the
advantage of allowing the use of high resolution methods for shock capturing that are difficult to develop
on unstructured grids. They also allow for efficient implementation on vector computers without using
gather-scatter operaticns (except at boundary cells). They incur little computational or memory overhead
since there are no metric terms and they use far fewer pointer arrays than their unstructared counterparts
Among the few references on Cartesian mesh methods are (Clarke, Salas and Hassan; Choi and Gross-

manj.

The major technical issue in Cartesian mesh methods is the small cell problem. Arbitrarily small

cells arise at the edge of the domain where the grid intersects a body. Stable, accurate and conservative

Upps

wlow Sne Lo

difference schemes are needed for these cells. Moreover, the time step for a time-accurate computation
should stilf be based on the volume of the regular cells away from the body, and not restricted by small
boundary cells. Previous efforts to use Cartesian meshes have merged these small cells together until a cell
with sufficient volume for stability is obtained. Clearly this loses resolution. In addition, if cell size is not
taken into account in implementing finite difference schemes on irregular grids, a second order scheme can

lose one or two orders of accuracy.

Our treatment of boundaries can be combined naturally with our adaptive refinement strategy using
locally uniform meshes. We retain the advantages (efficiency and accuracy) of uniform grids and are able
to resolve fine scale flow features induced by complex geometries. We are using the adaptive mesh
refinement algorithm (AMR) described in [Berger and Colella] to achieve accuracy comparable to the
body-fitted meshes, where grid points can be bunched in an a priori manner to improve the accuracy of the

solution.

A more complete description of our approach to developing stable boundary conditions for irregular
cells is described in [Berger and LeVeque]. Here, we only sketch the main ideas, and present computa-

tional examples for two dimensional time dependent flow in several different geometries.

One Dimensional Model Problem

We motivate the basic approach in one dimension, where we solve the equation u, + f (4), =0 on a
uniform grid except for one small cell in the middle (see Figure 1). Let A be the cell size of the uniform

grid, and ok the small cell size, 0 < o < 1. We use an explicit finite volume scheme to update all cells,

At
“?H =u} - _h— fivrz = ficu)

at the regular cells, i#0, and

n n At
up* =uf - Y (frz=fa2)

at the small cell. We want to define the fluxes f;,, so that the overall scheme is stable as a —0.
Typical flux functions for the regular cells include Godunov’s method, which for a scalar equations
with f7(&) < 0 is just upwind differencing, with
firva = F (uit401y = f (41)
and the second order Lax Wendroff scheme

(Ui+uis)

F(u; ui41) = 3

+ %(f(“m Hf(w)).

However, these definitions must be modified at the small cell, since if we define f,,, = F(ug.u,), the

resulting scheme loses accuracy and becomes unstable for small a. Qur approach is to define a new state

1) / N
A A

u_ u_ Ug Uy us
Uiesr Urign

Figure 1 Special flux formulas are needed at the edges of the small cell to maintain stability and accuracy.

Uieft and let

fi2 =F(“l¢/n“1)-

Here, .,y is an approximation to 4 at distance h/2 from the interface. For example, u;,;, might be obtained

by linear interpolation between u _; and u,,

20ug + (1-a)u
l+a

Ulesr =
Note that 4y, —ug as 0—1, and uy,—u, as 0—0. In either of these limits the grid becomes regular again
and the difference scheme reverts to the uniform scheme.

Similarly, we define a flux f_,,, using the left state u_, and a new right state Ungn defined by interpo-
lating 1 10 a point a distance h/2 to the right of this interface, e.g.

20ug + (1-a) u;
l1+a

Uyighy =
We then set
fori2 = F(u_y rigns)-
It can be shown for the equation u, = u, that if u,,;, and u,, are obtained by linear interpolation then
the resulting scheme is stable as a—0, using a time step A that satisfies the CFL condition for the regular
grid, %sl. This results holds for both upwind differencing and Lax Wendroff. However, for Lax Wendr-

off, a more accurate procedure would be to use quadratic interpolation for e and uy;,,,. In this case, a
combination of theoretical and numerical results show that if the additional point used in the interpolation
is the upwind point then the scheme is stable as a—0, but if the downwind point u_, is used , then the CFL
limit is reduced to 1/2.

Stable DitYerence Equations for Two Dimensional Irregular Cells

For twc dimensional calculations, we again need a new difference scheme to compute fluxes at the
edges of the irregular cells adjacent to the boundary. The boundary of a solid body is represented by a
piecewise linear segment in each cell, so that the irregular cells can have either 3, 4 or S sides. Our
approach uses locally normal and tangential coordinate directions to define left and right states for a
Riemann problem at each cell edge. This fits naturally with the MUSCL scheme used in the interior of the
domain in our calculations. However, we generalize the pointwise approach in the one dimensional case,
and use aconservative averages of the solution over a box a distance 4 in the appropriate direction away
from a cell edge.. For example, in Figure 2 the state g, is obtained using an area-weighted average of the
values u; ;_; and u; ; that intersect the box from the regular grid. In an analogous way we obtain the state
4,. These values are then rotated into a frame of reference that is tangent to the boundary, and a one dimen-
sional Riemann problem in the tangential direction is solved. This gives the flux f¢. This procedure is
repeated for the dashed boxes in Figure 2 that are normal to the boundary, giving a flux f, in the 1 direc-
tion. (The part of the box that lies outside the domain is interpolated from g, see Figure 3). The final value
of the flux at the vertical interface is a linear combination f¢cos6 + f;sin6, where 6 is the angle the boun-
dary makes with the grid. For a boundary with curvature, we determine these directions using the boun-
dary segment of the cell with the smaller area adjacent to the interface. This helps retain stability for the

| | _—

N
~
~
N
~
~

Figure 2 shows a schematic of the rotated difference scheme used to define the vertical flux.

smaller cells, by maintaining a certain cancellation property of our flux definitions, described more com-
pletely in [Berger and LeVeque]. Related work using rotated difference schemes has been done by [Jame-

son; Davis; Levy, Powell and van Leer].

At the solid wall boundary itself, the flux can be determined more simply, using only boxes normal
1o the boundary as shown in Figure 2. First we obtain a value ¢, for the box interior to the domain, using
area weighted averages, and rotate the velocities into the boundary coordinate frame. A boundary Riemann
problem is solved between g, and g, (with negated normal velocity), to satisfy the the boundary conditions

of no normal flow.

Figure 3 indicates the scheme used to determine the boundary flux.

In this case, if the solid wall boundary happens to align with the Cartesian grid, the scheme reverts to
the usual first order Godunov method. To improve the scheme to second order, following the MUSCL
approach as described in [Colella), we need to introduce limited slopes in the solution reconstruction phase,
and tangential derivatives for predicting states at the cell edges. These steps are also necessary to improve
the stability limit for Godunov's method from 1/2 to 1. Work on these improvements is continuing. Refer-
ring to Figure 3, we add a tangential derivative f¢ to the state g, for the normal Riemann problem, with
fe=f (ulk.k+1)~f (u(k=1,k)) / I, where I, is the length of the k™ boundary segment. The state
u(k.k+1) comes from solving a Riemann problem in the tangential direction at the interface between cells &
and k+1. As before, the stencil for this Riemann problem must be enlarged beyond the adjacent cells to

maintain stability. For example, the right state at this interface is not just the value ¢,.;, but a linear

combination of the solution in several boxes, g, and gq;.;, up to a distance h away from the interface.
The left state at this right interface can be taken to be the value g, since the length of that cell’s boundary
segment is larger than 4. This same procedure is used to include tangential derivatives in the normal box
Ricmann problems for interior cell edges. This procedure alone improves the CFL limit to 1. It remains 1o

incorporate monotonized slopes into the scheme in order to achieve second order accuracy.

While the overall scheme at the boundary involves twice as many Riemann problems as the ordinary
MUSCL scheme, it is fully vectorizable. The coefficients in the interpolations for the left and right states
are fixed for the duration of the integration, and are not dependent of the properties of the solution at each
step. In numerical experiments in two dimensions, this scheme remains stable for cell areas that are orders
of magnitude smaller than the regular cell areas (down to the round-off level). In essence, our method can
be viewed as a technique for defining fluxes on an irregular grid by a very local mapping to a regular grid.

This viewpoint may prove useful in defining higher order methods on unstructured grids.

Computational Example

We illustrate this by computing time dependent flow around a cylinder. The initial conditions are an
incident shock traveling at Mach 2.81. We use a simple MUSCL scheme to advance the flow field in the
interior of the domain. Figure 4 shows a contour plot of the flow field, as well as a plot of density as a func-
tion of arclength around the cylinder. The only cells drawn on the contour plot are the irregular cells from
the Cartesian grid that intersect the body. Note the smoothness of the arclength plot despite the irregulanty
of the grid around the body. This example was computed using the focal mesh refinement of [Berger and

Colella]; the location of the rectangular fine grids is indicated on the contour plot as well.

References

M. Berger and P. Colella, "Local Adaptive Mesh Refinement for Shock Hydrodynamics”. J. Comp. Phys.
82, 1989.

M. Berger and R. LeVeque, "Stable Boundary Conditions for Cartesian Grid Calculations”. Proc. Sympo-
sium on Computational Technology for Flight Vehicles, Pergamon Press, Nov. 1990, to appear. ICASE
Report No. 90-37, May, 1990.

S. Choi and B. Grossman, "A Flux-Vector Split, Finite Volume Method for Euler’s Equations on Non-
Mapped Grids", AIAA Paper 88-0227, Reno, Nevada.

D. Clarke, M. Salas and H. Hassan, "Euler Calculations for Multielement Airfoils Using Cartesian Grids",
AIAA Journal 24(3), 1986.

P. Colella, "Multidimensional Upwind Methods for Hyperbolic Conservation Laws", J. Comp. Phys. 87,
1990.

S. Davis, "A Rotationally Biased Upwind Difference Scheme for the Euler Equations”, J. Comp. Phys. 56,
1984,

D. Levy, K. Powell, and B. van Leer, "An Implementation of a Grid Independent Upwind Scheme ior the
Euler Equations”, AIAA Paper 89-1931-CP, Buffalo, NY.

A. Jameson, "Iterative Solution of Transonic Flows over Airfoils and Wings, Including Flows at Mach 1",
Comm. Pure Appl. Math 27, 1974.

DENSITY, TIME = @.118, COMPOSITE

-

(a)
12.99 ————r—T— T
b
6.00) (b)
y
o <4
o” L 1 L A L
9.0 8.58 1.90 1.58 2.00

Figure 4 (a) Density contours of the flow around the cylinder. (b) Density around the boundary of
the cylinder.

An Algorithm for Point Clustering
ard Grid Generation

by

Marsha Berger
Isidore Rigoutsos

Technical Report No. 501
Robotics Report No. 229
April, 1990

New York University
Dept. of Computer Science
Courant Institute of Mathematical Sciences
251 Mercer Street
New York, New York 10012

This work was supported in part by the Air Force Office of Scientific Research under Con-
tract No. AFOSR-86-0148, by the Department of Encrgy Contract No. DE-FGO02-
88ER25053, and by the NSF Presidential Young Investigator Award ASC-8858101. The
authors would like to thank Cray Research and Grumman Acrospace for matching funds in
support of the PYI award.

An Algorithm for Point Clustering and Grid Generation

Marsha Berger
Isidore Rigoutsos

Courant Institute of Mathematical Sciences
251 Mercer St
New York, NY 10012

ABSTRACT

We describe a new point clustering algorithm, and its application to automatic grid
generation, a technique used to solve partial differential equations. Algorithms from the
computer vision and pattem recognition literature are used to partition points into a set of
enclosing rectangles. We show examples from two dimensional calculations, but the
algorithm generalizes readily to three dimensions.

1. Introduction

This paper presents a new point clustering algorithm and its application to automatic grid generation.
The algorithm clusters the points into distinct rectangles such that neighboring points are in the same rec-
tangle (as much as possible), and all points are contained in some rectangle. The application is best illus-
trated by an example. We are solving a partial differential equation using finite difference techniques. The
difference equations are first solved on the uniform coarse grid in Figure 1. An "error estimation” pro-
cedure (Oliger] is then used to flag grid points that need to be in a finer grid, which is just a smaller rec-
tangular grid with finer mesh spacing. Figure 1 shows the flagged coarse grid points as well as the new fine
grids that together contain all the flagged points. This procedure is usually employed recursively, leading
10 a nested sequence of increasingly fine, locally uniform subgrids which are superimposed on the underly-
ing base grid.

The grid generation problem then is to define a set of rectangles that enclose all the flagged points.
Certain factors make a huge difference in the performance of these grids in solving the pdes.

{1) There should be as little unnecessarily refined area as possibie.

Since the cost of the numerical integration procedure is proportional to the area of the rectangle, the
smaller the better. Figure 1 gives an exampie of a set of flagged points for which a few patches lead to
much less refined area than refining the whole grid. This gain in efficiency is the purpose of adaptive

Foossommomems XXR™ """ 3
X XX XXX XX XX \
i XXXXXXXXXXX
! XXX XX XX XXX XX XX |
P XXX XX XXX XX XX XXX K™ ™
.xxxxxxxxxxxxxxxxx§ !
B XX XXX XXX XX XX XXHX X
§XXXXXXXXXXXXXXXX§§X§
XX XX XXX XXX XX XX XXX K X
B XX XX XXX XX X XX XX X XXX X X oo — D emreen -
XX XXX XK X X XX
ofeisteieteteteteteetetetetoteletoetot SR 1t R I L R o1 o5 S
XX X XXX XX XXX XK XK RK KX NER KT XXXXXKKX XXX 1 XXXXX 1 XXX KR
K XX XXXXXXXXXX X MK XX :XXXXXXXXXXX;; XX XX XX XXX XX
------------- ey o R TR X8 XXX X
mxx X X X% XX BRI R KR XXX XXX XXX X
XXX XX KX XX XX | XX§§§§K
L XXXXX Lo X - L XX XX

Figure 1 shows a coarse grid with rectangular subgrids around the flagged points. The coarse grid
points with high error are marked with an "x",

methods. Some unnecessarily refined area (or inclusion of non-flagged coarse grid points in a new rectan-
gle) is inevitable, since we are restricted to using rectangles. In addition, for numerical reasons the rectan-
gles are oriented with the base grid rectangle. This is true even if the flagged points lie on a diagonal of the
coarse grid, and couid be perfectly enclosed by a rotated rectangie. (However, an algorithm that uses
rotated rectangles is considered in [Berger]). Along these lines, if several rectangles are used to enclose the
flagged points, their overiap should be minimal.

Another criterion for generating these rectangles is:

[2) There should be as few rectangles as possible.

At the other extreme, we could put one tiny rectangle around each flagged point. Many of these tiny rec-
tangles would share a common boundary segment. However, there is boundary overhead associated with
each rectangular subgrid that should also be minimized, along with the area. In addition, these procedures
will be used on vector processors, which favors larger vector lengths and therefore larger rectangles. (We
could worry further about this, for example by trying to maximize the length in a particular coordinate
direction, but we will not consider such machine specific details here).

-3-

The third criterion is the most difficult to pinpoint.

(3] The rectangles should "fit” the data.

This is hard to make absolutely precise, but for example, if a person were to put the rectangles around the
points by hand, using whatever clustering or partition the brain uses, it would "look right". Although this is
not essential for accurate numerical integration on the rectangles, we prefer the adaptively generated
subgrids to be pleasing. Finally,

[4] The algorithm should be fast.

This algorithm is repeated every few timesteps, or hundreds of times during any particular numerical simu-
lation, and should therefore be fast relative to the time needed to take a time step on the resulting grids.

Our solution to this rectangle-fitting problem uses algorithms from the pattern recognition and com-
puter vision literature. A combination of signature arrays and zero crossings of second derivatives is used
to partitinn the flagged points into rectangles. Our examples are all in two dimensions, but the algorithm
generalizes readily and has proven effective in three dimensions too. Before describing our algorithm, we
give a little background and discuss some other approaches we tried and discarded.

1.1. Previous Algorithms

Our previous algorithms for this problem can be summarized as being of two main types: bottom-up
or top-down. The top-down approach is based on a bisection method. it can be viewed as a form of
divisive hierarchical clustering (Duda and Hart]. Initially, the flagged points of the grid are surrounded by
a single rectangle, and its efficiency is computed. Here, we define the efficiency of a grid as the ratio of
flagged points to the total number of coarse grid points in the new rectangle. This is one of the key parame-
ters behind our algorithm, and it is easily computed. If the efficiency is above a preselected threshold, the
rectangle is accepted and the algorithm stops. Otherwise, we bisect the longest direction of the rectangle,
and generate two new subgrids. This process is repeated recursively on each of the two subgrids. When the
algorithm terminates, all of the subgrids are guaranteed to have acceptable efficiency ratings. However,
hierarchical clustering methods are known to create clusters even if no natural clusters exist [Anderberg;
Hantigan; Jain and Dubes]. In addition, since the bisection uses no information about the locations of the
flagged points, a non-optimal grid hierarchy is generally created. To alleviate this, we usually follow the
bisection step with a merging step, where neighboring subgrids are merged into larger subgrids if the result
continues to be acceptably efficient. This meging step is what leads to the problem of overlapping grids.

-4-

The bottom-up approach starts at the grid point level. The flagged points are organized into a
minimal spanning tree, so that each point is connected 1o its nearest neighbor. Neighboring branches of the
tree are merged, either one point at a time, or a front at a time, as long as the resulting grid is efficient.
Although philosophically appealing, this algorithm actually performs much worse than the top-down bisec-
tion algorithm. A fundamental problem is the non-uniqueness of the minimal spanning tree. Also, the
algorithm suffered from the hill-climbing problem of getting stuck in local minima; it was very sensitive in
the beginning steps of the algorithm to the initial direction of growth of the clusters, and tended to stop
prematurely, although larger and acceptably efficient grids were just several branches away. In that case, it
had to be followed by a merging procedure as well.

- - F -

rr-

Figure 2 Nearest neighbor clustering is sufficient in simple cases, ¢.g., the top left cluster.

In practice, both approaches were preceded by a "nearest neighbor™ clustering algorithm. The pur-
pose of this was to separate flagged points when possible into isolated islands (see Figure 2). This some-
times produces acceptable clusters by itself, but fails to help when the flagged points formed elongated,
curved shapes. Thus, it was followed by either the bisection or minimal spanning tree algorithm. Summar-
izing, both of these algorithms produced less than optimally efficient grids that overiapped too much.
Better grids were easily created by hand.

2. Towards an Efficient Algorithm

In a more general form, the grid generation algorithm should cluster a set of m flagged points into k
clusters, where £ is either specified a priori or is determined by the algorithm itself. This special type of
clustering is called partitioning [Anderberg]. Our first approach considered the question of how to choose a

-5-

set of k "seed points” around which the k clusters would be built

2.1 A First Approach: Local Maxima in Two-Dimensional Grids

Initially, each of the grid points is given a value: "1" for the flagged, and "0" for the non-flagged
ones. These grid values, viewed as a binary image, / (x,y), are then preprocessed by convolving it with
cither an "averaging” or a "low-pass” filtering template, (see Figure 3) [Ballard and Brown; Horn; Levine).
This operation results in a non-convex function, 1 (x.y), whose local maxima, determined by the Sobel
operators [Ballard and Brown; Levine] of Figure 4, compose the set of "seed points” around which we
build the clusters.

a) b)

N TN I i
bt | o |t ot [e
bt ot |t | s |
bt |t |t | e | s
bt |t bt |t | s
— et [DN] |
— NI~
N ool |
— AN]
bt |t [DD | e | e

Figure 3 shows the filtering templates: (a) Averaging (b) Low-Pass.

Three partitioning algorithms were tested using the seeds found above: the standard k-means algo-
rithm, its converging variant, and a k-means variant where no updating of the centroids takes place
[Anderberg; Hartigan]. These algorithms are outlined in the Appendix.

a) -1 0 1 b) 1 2 1
-2 0 2 0 0 0
-1 0 1 a2 | A

Figure 4 shows the Sobel gradient operators: (a) 3/dx (b) 3/dy.

Figures 5 and 6 show graphically the output of the three algorithms on two sample data sets. The
three algorithms exhibit the same overall behavior. The seeds are sensibly chosen, but in all the test cases
the resulting grids overlap excessively. We attribute this problem to the large number of seeds discovered
by this method. The next method tries to reduce the number of seeds, keeping only the best, and thus hope-
fully reducing the overlapping.

SETERTTINST S TTTCTTTTSSTTESS
FYITTITITT pecevccccocsonce seacscs sy
asassped possscoscesssvese eod
asasaped posscsscessccene *eq
sosaspeq poveccesssevsose b
assssped pesscesssssnsece oo
asssspedecsscscce poscsscccfosssew soee
aAssssshedecesceced beescse os60s00sy
o . - L poocvvoge seened 4
ssnsnsssd -4 &
sehosssvye sssssnssnd | S — ansssasassd
sepos sovgw S8sss808804 T ——" S68LSAHLASAS
sshoowvodew sssssassand vesveveees sassasssss
sovewduee pasasssass ewvevveevve sasassssss
an VTV IV VTP VY posssssasasas
poveovvesvevee vseobosasqdanas [P — - 11 lssssssas
wvosovhosssdanan snee
sesvhevsadas svsvsveme an
- - LI LYY "> >] -
A Ao ad oo by 11 [TTTTY PP YT m an
- Sesvavey F webeoooduooscnscovnvsshrosdas
Stvevesussene - oww
Vevevvespedrecvsusessevee [*.
wehoduoesvusne *
e

csee escacsssens beocovssvsoessene eeeescced

®secscsssccccrrnas ase cescsssces pocesccscerevonee

eeveccsaccesccesaase t400ccccscccsccae N sscvovee =
€ececsscaane -

ssfoseisdd
sshocssvge
sehoscuvyew
peavvequew

s e - e
s r, R :

sescssssacan
sssceascasden

Figure S The sceds are local maxima of a two dimensional function.

Frrewnanne

LAl Dl L=
S g .

lq-ﬂl;

g~ '3

T L]

assasnaa
PIYYYYYYYYYY

assasas
sassssasas
hasaassncsanassanss wgueve

Pourveneenwe
T e S
enEReene

L T 2
retesnnwee
e weewne

—eresvne
eeneweeey

T T

WEXTEN
aacansa
Msassnsaasad

asssa

EEERP PP Y] PFPPFESAS P
Ansahasasvuvugorven
aanhassvovvedosen

| e ——
verrnenene
s e e
s WY ts T
.
Ppuvevvecsvveew -
PEOET VTRV VIE ’
pevvevesvvuve
peevsesveveve o
PSS °w
pevee ﬁ
1 A

Figure 6 The seeds are local maxima of a two dimensional function.

-6-

2.2 A Second Approach: Local Maxima in Signature Arrays

Signatures have been known in computer vision and pattern recognition for many years {Ballard and
Brown; Homn; Levine). Able to encapsulate gross characteristics of a shape, and computationally simple,
signatures proved very useful for establishing preliminary landmarks in images; these landmarks in turn led
to a subsequent reduction of the search effort. Given a continuous function, the horizontal and vertical sig-
natures, H (x) and V (y) are defined as

H@x)=[f&xy)dy
y

VO)=[fixy)dx

respectively.

First, the horizontal and vertical signatures of the image are computed. The resuiting one-
dimensional arrays are "smoothed" [Horn) using the template in Figure 7, and subsequently searched for
local maxima. Let M and N be the two sets of maxima. After discarding those tuples of the Cartesian pro-
duct MxN that correspond to non-flagged regions, we are left with precisely the coordinates of the starting
seeds.

1 2 1

Figure 7 shows the one-dimensional smoothing template.

With this choice of seeds, we again employed the three partitioning techniques (k-means, converging
k-means, and the no updating variant). Figures 8 and 9 show the results. This algorithm resulted in fewer
subgrids and reduced overiapping, making this approach superior to using the local maxima of /(x,y) for
the seed points. Unfortunately, the generated subgrids were still not the most efficient ones; better choices
were clearly possible. Some observations based on extensive experimentation could still be made: 1) the
non-converging variants outperformed the converging k-means, 2) overlapping was minimal whea no
updating of the centroids occurred, and 3) the distance metric (Manhattan Block vs. Euclidean) had no
appreciable effect on the results.

Apparently, the use of local maxima in signatures did not capture enough of the underlying structure.
In the next section, we use signatures in a different way to partition the flagged points into clusters.

3. The Algorithm

Our best algorithm uses ideas related to edge detection. One of the many approaches to the edge
detection problem is the one suggested by [Marr and Hildreth]. Based on the psychophysical and neuro-
physiological experiments of (Campbell and Robson], the method consists of first convolving the original

e
| S ——————— ——
| S ————
]

| s]

eeccoopegd
ecs o

seccscund
escccsvnd
sscaccaesd

seed

ee
peveveevewe .e
peeveveeveewe .o

+vewwewew
yreveves v

wwwvwe
-wweve
wowew

X

Scoscsvagecas
®scccceacans
Sesscsscececssecan

sscsescssossesceng
ssscccose -
posesescene

1 i 1
v T T
0080060
| S e .
fererrererrernsen
| e e
| BT
[e
qeeeosso sy
- ———————— -
aadal syl]
eee
aw
ad sowwe
- TEEBWUERe -
cvwewee
weves
(21T 1T1]] ,
| 1 l Em

Figure 8 The seeds are chosen from local maxima of signatre arrays.

Y

e

p
posssesvee

Figure 9 The seeds are chosen from local maxima of signature arrays.

-7-

image against a Gaussian kemel and then computing the Laplacian of the result; the intensity discontinui-
ties are associated with those positions where the Laplacian is equal to 0 (zero crossings).

In what follows, the input grids are viewed as binary images in the sense of paragraph 2.1. The
edges will now be located at those positions of the grid where a transition from a flagged point region to a
non-flagged one occurs. The most prominent such transition represents a ‘‘natural’’ line with respect to
which the original grid can be partitioned. For the example depicted in Figure 10, the line (¢) represents
such a transition.

xx 1 © X X
X X X X X X X X
X X X Xi X X X X
X X X X X X X X
xxxxi X X X X
X X X Xi
X X X X
X X X X! < X
X X X X X X X X X
X X X X X X X X X
X X XIX X X X X X X
XX X X X X

Figure 10 The rectangle is partitioned at line (e); after this, an isolated cluster can be detected for
further partitioning.

The problem is that of determining such a transition. The Marr-Hildreth method, although a poten-
tial candidate, cannot easily be employed towards this end for two reasons. First, its output is a collection
of Boolean values at the different grid locations: TRUE if a zero crossing exists at that location, FALSE
otherwise; these Boolean values need to be combined in order to generate an actual edge, a not so trivial
task. Second, since the Laplacian operator is isotropic, the *‘natural®* line with respect to which the original
grid could be split will not, in general, be parallel to the sides of the grid.

Signatures again hold the answer: the idea is to look for zero crossings in the second derivative of a
signature. This idea borrows from both the signature approach and the Marr-Hildreth method, except that
we do not convolve with a Gaussian filter.

In general, there is more than one zero crossing in a given signature array. For our purposes how-
ever, we only select one zero crossing at a time; it corresponds to most prominent edge, and its location is
determined by searching both the horizontal and vertical signature arrays for the zero crossing correspond-
ing to the largest local change of values. This is indicated in Figure 11, where the row (resp. column)

Z A
XX 1@ 2
XXX X! X XX X 8 4
X XXX X XXX XX 10 -1
XXX X! XX XXX XX 1o
XXXX1 XXX XXXX X 12 -1
XXX X1 XXX XXX XX 12 0
XXXX1 XXX XXX XX 120
XXXX1 XXXXXXXX 2
XXX X XX XXX XX o
XXX XX XXXXXXO® |u 3
XX XKXEKXXXKXRXRRXXX """ |14 s
XXX XX XX X XX X X 2 1
XX XXX X X XX 9
p> 10 12 13 12 4 3 7101212 1211 10 8
A -1277541-120-10-1

Figure 11 The steepest zero crossing occurs at line (¢), and makes the most efficient rectangles.

labelled Z contains the horizontal (vertical) signature, and the row (column) labelled A contains the Lapla-
cian of the signature in the appropriate direction.

The input grids are also expected to contain isolated regions of flagged points (islands), making it
necessary that both signature arrays be first searched for chains of 0’s, or **holes’*. This can be seen in Fig-
ure 10. The occurrence of such holes provides obvious choices for splitting the input grid into a number of
subgrids, and is exploited before any atempt at locating zero crossings is made. If any holes are found, we
do not attempt to compute any zero crossings. We proceed by applying the above steps to only those of the
generated subgrids that are still inefficient.

We now give a high level description of the actual algorithm, followed by sample runs in Figures 12
to 16 on a number of real and synthetic problem cases.

BEGIN
i=1;
while (i <= number_of_rectangles) do
if (rectangle efficiency < threshold) then
compute signamres ;
find the best place to split R; (either a hole or edge) ;
if (found a place to split) then
split rectangle in two ;
append new rectangle to end of list of rectangles ;
else
i=zi+l;
endif
else
i=i+ 1; (consider the next rectangle on the list)
end if
end while
END

4. Comments on the Algorithm and its Performance

While most of the time the algoritam performs exceptionally well, sometimes it generates anomalous
and/or non-optimal rectangles. As we will see, many of these can be eliminated by simple changes in the
algcrithm. The anomalies fall into several general categories, which we illustrate by picture. The basic
algorithm description has two exit points: a rectangie is "accepted” either because its efficiency is already
above threshold, or because it cannot be further split using either of the two methods (i.e. holes and
inflection points). As a result, the efficiency of some of the generated subgrids may be below the preset
threshold. This is the case with all grids associated with regions that form an angle with the harizontal. The
inefficiency approaches its maximum as angles approach 45 degrees.

Another problematic grid is the one appearing in Figure 17: as can be seen neither the horizontal nor
the vertical signatures will contain any holes or zero crossings, and this will be true for all non-zero values
of a,b. In all such cases the bounding rectangles will have an efficiency of precisely 50%. An ordinary
bisection step could be easily incorporated here to increase the efficiency to 100%. A similar arrangement
of flagged points which we have encountered in our experiments (see Figure 18) leads to another kind of
non-optimal choice. One way around this is to used weighted second derivatives, scaling the Laplacian by
the number of flagged points. This leads to a correct choice for the zero crossing in Figure i8.

i 1
Teitessdeseseas :

460scccesaccaoae

dadcdecdcaldeded

Sesgacqe
LE Y Yy

secse ssecscssnce
4eceecsoecvscncqqunaa s0esvressvsnevacaas
sccsvcass - - o n
ae
as
ese

weessascscntsnas seaas

[EEXRPRY L)

assadbasangsannsnnns

Svaceqcaacaae
eesvecqaccng ®¢tecscscessns

$ 9 4

Figure 12 An example of the final algorithm.

b=
b=

-

8 - 48
-

-

o

-

esscacacae
i1esevee

[T RYR)
csacas

i

.

LS

Figure 13 An example of the final algorithm.

----- Tedsisstodontssasddoccsdosnie

Figure 14 An example of the final algorithm.

T L4)
SRR SESAIN
SEREEES ;
w
i 1 1

E

P SR S S Y

PP S Y

N B BAL B Zaat e 3

P o 2 0 0 & 2 a4 e o

P ¢ a4 o 2 4 4 s s

Figure 15 An example of the final algorithm,

T T
e s - ~
.. LI
e« o = « = .« e
« o ® ¢ a - LI
« ¢« e s« . e e«aasa
« e & &« a e e« a e = a e = aa
e e e a8 a 2« a e« a«aaa = e e« aa
. e e 0 a a & @ o a o o . e
« o @« 2 a s 0 e« s @ @« a a o -« « . .
€« a @ 6 8 a3 e o e a s ¢ ¢ & s« -« e .
e a o & o @« @ ® ¢ e« a a8 a2 s « @ L -
« u & & a @ o 4 ¢ a & & o s o =
e a 8 o @ @ ¢« 0 e 8 @ a o -
« e« o & @ @« @« a 8 ¢ o o o
o« o0 L]
-

2K

)

] L ¥
e o < e
e « - 4
) e &« o o 4
oo o 4 e « o « 4
o e o o -n014
e @ o « . @ a @ o @« & & 4
« e o d « s a e ae e ¢ « o 4
-a.J.o UEREEREER o o o « 4
e« e o dfs o o o e v o a a0 s 4l . e ¢ o o
« « o o .nn‘Ahnn.bQ.F-c fnl. -
e« s o 4 a dfs = 2 o o « = 4 A e @ o
e s o 4 qdle » o ¢ o« ¢ o 4 o
- ® o 4 ¢« » « o a & e 4
ana e o« a « s o o ¢
¢ « &« ¢« o « o 4 n
* « o « o o o 4 0.
A_a_aa -3
k
| —A i

Figure 16 An example of the final algorithm.

-10-

FomTomemmeoseoos KX XK KRR R
XX XX XXX X X
XXX XXX XX X
XXX XXX XX Y|
XX XX X X xx
X XXX X X X\

4

Y

XX X X X
XX XXX
XX XXX
XX X X X X
[~

5 KX R X
X X X X X
XX X X X X
XX X X X X
XX XX X

Figure 17 There are no zero crossings in the signature arrays.

s KRR XX XX
! XX XX XX X!
; X XXX X X X
XXX XXX X
XXX X XXX
TR R X X SCX
XXX XXX X!
' XXX X X

Figure 18 This set of points leads to a non-optimal partition, unless the zero crossings are scaled.

A modification of our algorithm that covers both anomalous cases is to compute the sum of the abso-
lute value of the gradient, and difference the results to get the second derivative. The most robust solution
to this problem is still an open question.

A seemingly problematic case is shown in Figure 19. Here it appears as if the algorithm made a
non-optimal decision by unnecessarily splitting rectangle R 1 (dotted line) into two smaller subrectangles.

-11-

However, careful inspection shows that rectangles R 1 and R 2 could not have been generated without intro-
ducing an overlapping region.

XX§xxxxxxxx """" B
XXX X X XX XX X .
KOG X XX XXX XX XXX !
XX XX XXXXXXXX
XXX XXX XXX XXX !
XX XX XX XX X X XX X X
XXX XX XXX XX XX
r'x§§xxxxxxxxxxxx
XXX XXX XXX XX XXX X
§xx§§xxxxxxxxxxxxx
XXX XX XX XX XX XXX
§§§§xxxxxxxxxxxxx:
XX XX XX XX XXXXX
FX XXX XXX XX XXX |
XXX XXX XKXXXX
XX XXXXXXXX
! XXX XX XXX !
KRR XX - XXXX_ . ’
XXX “~R2
X X X
R1I— XXk

Figure 19 shows an unexpected set of rectangles.

Tight bounds for the running time of the described algorithm are very hard to establish, since the pre-
cise flow of the algorithm is input dependent. However, it should be clear that the running time is
O (k(P+N+M)), where k is the total number of grids upon termination of the algorithm, and P is the
number of flagged points. The P term comes from computing the signatures of the points (by traversing a
list of the flagged points). The N (resp. M) term comes from the linear search that determines the best
inflection point. The above bound is by no means optimal, and the algorithm performs very well in prac-
tice. Preliminary three dimensional results also show great performance.

5. Conclusion

We have described a new and efficient algorithm for point clustering and adaptive grid generation.
The algorithm's performance has been demonstrated through a series of graphs showing results obtained
with both synthetic and actual 2-dimensional inputs. Preliminary experiments with 3-dimensional problems
also show a considerably improved performance over the previous approaches. In general, the efficiency of
the enclosing rectangies for our applications has been very high, typically ranging between 85% and 100%,
with the exception of the problematic cases illustrated in figures 17-19. It is surprising how effective the

-12-

algorithm performs on multidimensional data, even though it is based on Cartesian coordinate directions.
Finally, this algorithm may also prove useful in other applications with binary image data, for example in
generating bounding rectangles for computer graphics applications. A rectangle fitting algorithm has also
been used in conjunction with a pattern recognition system for understanding Japanese business cards (Kise
etal].

6. Appendix

6.1 McQueen’s k-means Partitioning Algorithm

(1]

2]

(3]

Form k single member clusters each one containing precisely one of the k starting seeds. The clus-
ters’ centroids originally coincide with the starting seeds.

Assign each of the remaining data points to the cluster with the nearest (with respect to an appropri-
ate distance metric) centroid recomputing the gaining cluster’s centroid after each assignment.
Assume the cluster centroids are fixed this time, and reassign each of the data points to the cluster
with the nearest centroid (one pass through the data).

62 McQueen’s Converging k-means Partitioning Algorithm

(1)

(2]

(3]

4]

Form k single member clusters each one containing precisely one of the k starting seeds. The clus-
ters’ centroids originally coincide with the starting seeds.

Assign each of the remaining data points to the cluster with the nearest (with respect to an appropri-
ate distance metric) centroid recomputing the gaining cluster's centroid after each assignment.

For each data point compute its distance to all the cluster cenwroids; if the nearest centroid
corresponds to a cluster other than the point’s actual parent cluster reassign the point; recompute the
centroids of both the gaining and losing clusters.

Repeat step 3) until a full sweep through the data does not induce further changes in the points’
memberships.

6.3 Non-Updating Variant of k-means Partitioning Algorithm

(1

[2)

Form £ single member clusters each one containing precisely one of the k starting seeds. The clus-
ters’ centroids remain fixed throughout the algorithm.

Assign each of the remaining data points to the cluster with the nearest (with respect to an appropri-
ate distance metric) centroid but do not update the gaining cluster’s centroid (one pass though the
dats).

-13-

7. References

[1] M. Anderberg. Cluster Analysis for Applications, Academic Press, 1973.

[2] D. Ballard and C. Brown. Computer Vision. Prentice Hall, 1982,

(3] M. Berger. Data Structures for Adaptive Grid Generation. SIAM J. Sci. Stat. Comp. 7, July 1986.

[4] M. Berger and P. Colella. Local Adaptive Mesh Refinement for Shock Hydrodynamics. J. Comp. Phys.
82, May, 1989.

[5] F.W.C. Campbell and J. Robson. Application of Fourier Analysis to the Visibility of Gratings. Journal
of Physiology 197, 1968.

[6] R. Duda and P. Hart. Pattern Classification and Scene Analysis. John Wiley and Sons, 1973.
[7]1]. Hartigan. Clustering Algorithms. John Wiley and Sons, 1975.

[8] B. Hom. Robot Vision. MIT Press, 1986.

[19 A. Jain and R. Dubes. Algorithms for Clustering Data. Prentice Hall, 1988.

[10] K. Kise, K. Yamada, N. Tanaka, N. Babaguchi and Y. Tezuka, Visiting Card Understanding System.
Intl. Conf. Pattern Recognition 1988.

(11] M. Levine. Vision in Man and Machine. McGraw-Hill, 1987.
{12] D. Marr and E. Hildreth. Theory of Edge Detection. Proc. Royal Society of London 207, 1980.

(13} J. Oliger, Approximate Methods for Atmospheric and Oceanographic Circulation Problems. Lecture
Notes in Physics 91, (Glowinski and Lions, eds.),Springer-Verlag, 1979.

Computing Systems in Engineering Vol. |, Nos 2-4, pp. 305-311. 1990
Printed in Great Britain,

0956-0521/90 $3.00 + 0.00
C 1990 Pergamon Press plc

STABLE BOUNDARY CONDITIONS FOR CARTESIAN
GRID CALCULATIONS

M. J. BErGert and R. J. LEVEQUE}

tCourant Institute, 25! Mercer Street, New York University, New York, NY 10012, US.A.
tDepartment of Mathematics, University of Washington, Seattle, WA 98195, US.A.

(Received 20 April 1990)

Abstract—The inviscid Euler equations in complicated geometries are solved using a Cartesian grid. This
requires wall boundary conditions in the irregular grid cells near the boundary. Since these cells may be
orders of magnitude smaller than the regular grid cells, stability is a primary concern. A new approach

to this problem is presented and illustrated.

1. INTRODUCTION

In previous work' ® we have described a Cartesian
grid method for the inviscid Euler equations in
arbitrary gemetries. There are many advantages to
be gained from this approach. Grid generation is
simplified, since we avoid the use of (possibly muiti-
block) body-fitted grids, and we can use high resol-
ution, highly efficient solvers on regular grids over the
bulk of the domain. This has led to renewed interest
in Cartesian grids in recent years (see Refs 4 and 5).
One of the difficulties with Cartesian grids is that
they give insufficient resolution in certain regions
such as leading edges. This can now be overcome by
Cartesian adaptive mesh refinement.'®

The principal remaining difficulty in this approach
is due to the essentially arbitrary way that a Cartesian
grid intersects the boundaries of the computational
domain. In particular, a solid wall boundary cutting
through the grid creates irregular cells that may be
orders of magnitude smaller than the regular cells
away from the boundary. For these irregular cells,
special difference equations are needed that maintain
stability and accuracy, and satisfy the solid wall
boundary conditions of no normal flow.

In this work, we present an improved method for
the small boundary cells. We use an explicit, finite
volume formulation that computes fluxes at cell edges
on the regular part of the domain. We would like to
define fluxes at the edges of the irregular cells in such
a way that the method is stable even with very small
boundary cells, using a time step based on the regular
grid cells away from the boundary. The Courant-
Friedrichs-Lewy (CFL) condition requires that the
numerical method allows information to propagate at
least as quickly as the underlying differential equation.
In the present context this means that we must define
fluxes at the sides of our irregular cells based on more
than just the neighboring cell values.

In our previous work, we have used a wave
propagation approach in defining these fluxes. Here

we propose an alternative method that has some
advantages over the wave propagation approach. In
particular, the wave propagation method is subject
to intermittent instabilities due to two-dimensional
effects that are not clearly understood. The new
method has a cancellation property in two dimensions
that appears to give better stability properties. More-
over, the computational geometry is simplied in the
new approach. The fluxes are defined in terms of
weighted averages of nearby cell values. These weights
may be calculated as a preprocessing step on any
fixed grid and need not be repeatedly calculated. In
the previous approach the weights depended on the
flow variables and a certain amount of computational
geometry was required near the boundary in every
time step.

We consider the inviscid Euler equations of gas
dynamics in two space dimensions

u + flu), +glu), =0, (1)
where
[~ P
pu,

pu,
| o£

L
pui +p
pu u,
“l(pE + P)

Su)=

[pu;]
pu, i,

pui+p

| w(pE +p)

glu)=)

Here (u,,u,) represents the velocity, E is the total
energy per unit mass. and p is the pressure which is

308

306 M. J. BERGER and R. J. LEVEQUE

related to the other variables by the equation of state.
We assume a y-law gas, so that

p =y — D)(pE — ip(ui + u})). (3)

At a solid wall boundary we require that the
component of velocity normal to the wall be zero.
In one space dimension the system reduces to

u, + flu), =0. 4)

where u =(p. pr,pE) and fiu)=(pr.pr’+p, v(pE
+ p)). with ¢ = u, the velocity. The boundary con-
ditions become v =0 at a solid wall.

2. A ONE-DIMENSIONAL EXAMPLE

In order to illustrate this approach we begin with a
one-dimensional model problem, the one-dimensional
Euler equations for x > 0 with a solid wall at x = 0.
We take a grid with cell interfaces at the points

X =0
x=h
x,=h"+jn for j=23. ...

Here 4 is a uniform grid spacing and 4’ < 4. The grid
is uniform except for one small cell near the boundary
(see Fig. 1). We use a conservative method in the
form
+ n k n
urt'=0; - i [F

1+l
i

—Fl, j=01.... ()

!

Here 4, is the width of the jth cell, so in our case we
have hy=h" and h, = h for j > 0.

For simplicity we restrict our attention to
Godunov's method in the regular portion of the grid,
although the ideas we propose can be extended to
higher order methods as well. In Godunov's method
we take

Fr=fu™Ur_,. U, 6)

where u*(u’,u®) represents the solution to the
Riemann problem with left and right states «* and
u®, evaluated along x:t =0. Although a rigorous
stability proof is not available for systems of
equations, in practice this method is always stable

provided the CFL condition

<1 N

K Mnan
h

Y, U,

4U°%
3 X, X, X,
Xo0

Fig. 1. One-dimensional grid with one irregular cell adjacent
to the wall.

is satisfied, where A, is the maximum wave speed.
We will assume that our time step & is chosen so that
the condition (7) is satisfied relative to the uniform A.
We will use the flux Eq. (6) forj =2,3..., 1.e atall
interfaces where the cell on both sides is regular. Qur
task is to define fluxes F7 for j =0.1 so that we
maintain stability (and accuracy) with this time step
even if h' < h.

First suppose h'=h. Then we can use the
Godunov flux [Eq. (6)] also at j = 1. At the wall we
use the well-known observation that the solution to
the boundary value problem can be obtained by
ignoring the wall and extending the computational
domain to the whole line — x < x < x, if we take
data u,(x) for x <0 equal 10

p(x.0) = p(—x.0)

r(x,.0)= —t(—-x,0) for x<0

p(x.0)=p(—x.0)

We will denote this “reflection™ of the data (in which
the velocity is negated) by the operator 4. so that :
shorthand we can write
u(x,0) = Ru(-x,0) for x <0.
With this extended data, the solution continues to
satisfy u(x,7)=Ru(—x,1)) also for t >0 and n
particular the boundary condition u(0.11=0
automatically satisfied. This suggests that we obtain
a flux at the wall by solving a Riemann problem with
left and night states

ut=AU,) uf=1U,

in each time step to obtain
Fy = fu*(R(Uy). uy)).

(For brevity we will leave off the superscript » in
general.) Note that the density and energy components
of this flux will be zero since the velocity compaonent
u* is zero at the wall. There will only be a momentum
flux at the wall due to the pressure there, as expected
physically.

If h" < h we could attempt to use this formula to
define F, but we would find that it is unstable unless
the CFL condition
ki

max

h

<l

is satisfied. This will place an unreasonable restriction
onkif h"<h

This instability is caused by the fact that the
boundary flux F, is based on the data (), alone |t
the CFL condition (8) 1s satisfied. then it 1s only this
data that affects the flux at the wall over the ime step

Boundary conditions for Cartesian grid calculations

However, when Eq. (8) is violated the value U, should
also affect the flux at the wall, and ignoring this effect
leads to instability.

In a “large time step™ approach we increase the
stencil of the method, meaning we allow more data
points to come into the computation of each flux, and
hence retain stability. One way to achieve this is by
a wave propagation approach. The solution of the
Riemann problem at each cell interface consists of
three waves propagating away from the interface. If
Eq. (8) is satisfied then these waves remain in the cells
bordering the interface during the entire time step
and hence affect the solution only in these cells. If Eq.
(8) is violated then the waves may affect cells further
away. Implementing Godunov's method in terms of
this wave propagation approach, allowing waves to
affect more than just the adjacent cell. gives a large
time step generalization that remains stable for much
larger time steps.” In the present context this allows
us to reduce A’ without reducing the time step k.
Waves from the boundary Riemann problem cross
the interface at x, and affect U, as well as U,. Waves
from the interface at x, may reach the boundary.
These waves reflect off the boundary and the reflected
wave affects the value U’) and perhaps also U, if the
reflected wave reaches the cell interface at x, during
the time step.

A more detailed description of this procedure may
be found in Ref. 3. A natural extension to two space
dimensions gives one method to deal with small cells
near the boundary, as described in Refs 1-3. In one
dimension this works very well but in two dimensions
occasional stability problems have still been observed
due to multidimensional effects.

2.1. The new approach

Our new approach to the small cell problem can
also be illustrated with the one-dimensional problem
described above. We again use the method of Eq. (5)
with Godunov fluxes [Eq. (6)} for j=2.3.... For
j =0 and j =1 we define fluxes in a similar manner
but with a different choice of states u* and «® in the
Riemann solver. Recall that in a naive attempt to use
Godunov's method regardless of the size 2° of the
small cell we would take left and right states

“5 =AU, “(I)(= U, 9

ut =0, uf =10, (10)
To maintain stability when A" is small, we need to
allow data from additional grid cells to affect the
left and right states at each of these interfaces. Recall
that the method is assumed to be stable with our
choice of k and / on the regular portion of the grid.
This suggests that we would define u! by taking the
average value of U over an interval of length 4 to
the left of the interface x, and define u* by taking the
average value of U over an interval of length 4 to the
right of x,.

307
For example, at x, = 0 (the wall) we set

uf =2 (h'Uy+ (h = K)U,).

(1n

If we view the grid values as defining a piecewise
constant function with values U, in the jth cell, then
Eq. (11) is the average value of this function over the
interval 0 < x <h. Note that if A" =h (the grid is
completely regular) then Eq. (11) reduces to uf = (),
as expected for Godunov's method. Recall that in
Godunov's method we take ul=R(U,;)= Auk)
to impose the boundary condition ¢(0,) =0. This
suggests that more generally we take

ub = Ak, (12)

where uf is defined by Eq. (11). We then use the
Godunov flux

Fo=f(u*(ug.uf)) (13)
as the flux at the wall. Using Eq. (12) guarantees that
there will be no flux of mass or energy through the
wall and hence that the method is conservative.

To define the left and right states of x, we again
construct intervals of length 4 to either side of this
point and average the piecewise constant function
defined by U over these intervals. To the right of x,
lies a regular cell of length A, and so

ul=U,. (14)
To the left of x, an interval of length 4 extends
beyond the wall (assuming 4" < &). Beyond the wall
we assume that U takes the value u} given by Eq. (12).
A weighted average of this value and U, gives ut

1
uf:z(h'b’o+(h—h’)ué). (15)

The flux f, is then defined by

Fy=f(u*(ut. ufy). (16)
Again, if A" = h this reduces to the standard Godunov
flux.

This method remains stable even when A" < h. To
see why this should be so. consider the formula (5) for
Jj =0 where A, = h". It is the division by A" that may
cause stability problems unless the fluxes F, and F|
themselves agree to O(h’) as h'—0. The Godunov
fluxes based on Egs (9) and (10) do not have this
property. However. our proposed fluxes (13) and (16)
do have this property. since inspection of the formulas
(11). (12). (14) and (15) shows that ut =ul + O(h")
and uf = ulf + O(h’) as k' —0. Since the flux function
f(u*(u*, u®)) is a Lipschitz continuous function of u*
and u?®, it follows that F, — F; = O(h’) as h' =0 and
there is at least a chance that the method remains

308 M. J. BErGER and R. J. LEVEQUE

stable for arbitrary A’ <h. Numerical experiments
show that this is indeed the case (although it is poss-
ible to contrive examples, such as a strong rarefaction
wave originating at this irregularity, where the results
are not very accurate).

3. BOUNDARY CONDITIONS IN TWO DIMENSIONS

Turning now to the two-dimensional problem, we
will give a brief description of how the idea described
above extends to handle the small cell problem.

Consider the portion of the boundary shown in
Fig. 2a and a typical boundary cell (i. /). The formula
for updating the value U, is the two-dimensional
analog of Eq. (5)

k
A

y

ut'=U,-—I[F,,,,-F,+G,.,—G,+ H].

amn

The fluxes F, G. and H represent flux per unit time
through the corresponding side of the grid cell (see
Fig. 2b) and A4, is the area of the cell. If any of the
sides are missing, the corresponding flux is zero.

On regular grid cells, /, = 0 and the fluxes F and
G might be defined by an extension of the Godunov
method, setting

F,=hfu*(U,_,,. U,)
G, = hgu*(U,, . U,)). (18)

Here u* represents the solution to the appropriate
Riemann problem in the x or y direction. Note that
the fluxes include the factor A, the length of each side,
to give a flux per unit time across the side.

It is the denominator 4, in Eq. (17) that causes
trouble when the cell is very small. We again assume
the method is stable on the regular portion of the
grid, where 4, = A*. To maintain stability we need to
insure that our formulas for the fluxes cause the total
flux [the sum in brackets in Eq. (17)] to cancel to
O(A,) as A,—0. This is only possible if the fluxes are
computed via formulas that involve more than just
the two cells bordering the cell side. We take an
approach analogous to what we described above in
one dimension.

3.1. Boundary fluxes

We begin by considering the boundary segment,
where we must compute the flux H/,. In two dimen-

(a) (b)

G e
‘[(1) e

\ () s ty)

|

Fy, I (i) IF, .y

k |

R H'_—_/
N "G,

Fig. 2. (a) The Cartesian grid near the boundary. (b) Blow-
up of cell (i, j) showing the location of fluxes.

Fig. 3. The inbox and outbox constructed from the bound-
ary segment of cell (i, j). and the inbox for two neighboring
cells.

sions the solid wall boundary condition requires that
the normal velocity at the wall be equal to zero. If we
have some value u} representing the value oi .. just
inside the wall, then we can obtain the flux H, by
solving a one-dimensional Riemann problem in the
direction normal to the wall, with left and right states
ub=Aur) ul=ur.
The reflection operator # is now defined by negating
the normal velocity component while leaving the
tangential velocity component along with the density
and pressure unchanged. The resulting Godunov flux
is used for H,.

We obtain ;' by a procedure analogous to that
of the one-dimensional example. We construct a box
extending a distance # away from the wall as shown
in Fig. 3. The box extending into the computational
domain is called inbox(i,j). The mirror image box
outside the domain is called outbox(i.j). We obtain
the value u;} by viewing the given data U as defining
a piecewise constant function, constant in each gnd
cell, and setting u)' to be the average value of this
function over the region inbox(i, j). In Fig. 3 inbox(i. j)
would contain an area-weighted average of two gnd
values while the value for inbox(i — 1,j) is based on
four gnid values. We think of the outbox as containing
the value u)" = A(u}}).

To find the weights needed to compute i} we must
compute the intersection of the inbox with each
nearby cell. This is easily accomplished with standard
computational geometry routines. Note that for a
given geometry and grid these weights need only be
computed once at the beginning of the computation.
They need not be recomputed in each time step.

3.2. Fluxes at other sides

We now consider the fluxes F and G along other
sides of this cell. These are all computed by similar
procedures, so to be specific we will consider the
computation of F,. the flux on the left side of this cell.

To compute F, we solve two Riemann problems.
one in some direction % with data uf. uf and the other
in the orthogonal direction n with data ul. uf.
The choice of these directions and the data will be
discussed in a moment. First we explain how these
Riemann problem solutions are computed and used
to define F,.

Boundary conditions for Cartesian grid calculations 309

Fig. 4. A vertical cell interface and the %- and n-directions.

Figure 4 shows a typical vertical cell interface
and two orthogonal directions £ and 1. Let 6 be the
angle that & is rotated from the x-direction (8 <0 in
this example). Suppose we solve a one-dimensional
Riemann problem in the Z-direction with left and
right states uf, uf 1o obtain the flux per unit length
per unit time in the £-direction. (To do this we rotate
the velocity components of «f. «f into &-n velocity
components, solve the one-dimensional Riemann
problem, and then rotate the resulting flux f back
to x-y velocity components.) Call his resulting
flux f;.

Similarly, solving a one-dimensional Riemann
problem in the n-direction with left and right states
uk, ul gives £, , the flux per unit length per unit time
in the n-direction. The total flux across the vertical
segment of length A’ is then

F=h(fcos8—f sin8). (9

This is the value we use for the flux F,.

This same approach has been used by others
(see Refs 8-10) to define multidimensional upwind
methods. In these methods the directions & and n
are chosen based on the local flow in an attempt to
use physically meaningful directions in place of the
artificial coordinate directions. For example. the
direction of the velocity or the pressure gradient
might be used to define £. In our application we are
only considering cells adjacent to the boundary and
the relevant directions are the directions tangential
and normal to the wall. We choose £ to be the
direction tangential to the wall in one of the two cells
bordering this interface. Since our primary concern
is to maintain stability in very small cells, we choose
the smaller of the two adjacent cells to define this
direction. This will lead to cancellation of fluxes in
tiny cells in the same manner as previously seen in the
one-dimensional example. The n-direction is normal
to the E-direction.

3.3. Tangential hoxes

We must still specify the data for these tangential
and normal Riemann problems. We first consider the
tangential problem. We use an approach similar to
the specification of data in an inbox described above.
From the interface we construct boxes that extend a
distance h in the &-direcuon. Figure Sa shows an
example. The data uf. uf are obtained by an area-
weighted average of the values in each cell the box

(o) n)

/
i

A
‘ \‘,

Fig. 5. (a) Tangential boxes constructed from the cell
interface. (b) Normal boxes fiu.. "he cell interface and
outbox(/ ~ 1. j).

overlaps. In our current implementation we assume
the wall is convex, so that these boxes lie entirely
wnhin the computational domain. Each box overlaps
at most two grid cells and the weights are easily
calculated. Since the directions Z and n and the
resulting boxes depend only on the geometry. not on
the flow variables, these weights can again be calcu-
lated once and for all as a preprocessing step.

3.4. Normal boxes

Figure 5b shows the normal boxes in the n-direc-
tion. The box in the outward direction does not hit
the boundary and overlaps at most two regula. . 's,
so uX is calculated as an area-weighted averag. of
these cell values. The other box may extend beyond
the boundary. If so, the portion lying outside the
computational domain lies in one or more outboxes.
the artificial cells created in the process of computing
the boundary flux H, described above. Figure 5b
shows a simple example where the normal box
intersects only one cell (i — 1. /) and outbox(i — 1./).
More generally the normal box might intersect two
ceis and their outboxes, as happens for example
when we compute the flux F,, ,, whicl involves cells
(i./) and (i.j — 1). Moreover the two nutboxes will 1n
general overlap due to the convexity of the region.
We again use area-weighted averaging over the four
cells in question, weighting the values U., U, . u}*.
u | by the areas of intersection and then dividing by

the sum of all these areas.

3.5. Cancellation

Although we will rot present the details here, it can
be shown that this way of defining fluxes leads to the
desired cancellation of fluxes in very small cells. 1. =
values of uf computed at each of the three sides of a
very small triangular cell are nearly the same because
of «ur construction. Thev differ by only 0(4,) as
A,--0 The samc¢ is true of each of the other values
uf uk.ufand so by Lipschitz continuity of the fluxes
F, G and H we obtain the required cancellation.
Numerical results show stihility even when 4, is
many orders of mag.itude less than #°.

3.6. Higher order methods

The methed (17) with fluxes (18) is only first order
accurate and iz highly dissipative. In our previous
work we used the wave propagation boundary con-
ditions together with a high resolution method away

310 M. J. BERGER and R. J. LEVEQUE

from the boundary and obta.ned reasonable results
(see Ref. 1). The new boundary conditions can also
be applied in conjunction with a high resolution
method and give similar results. Moreover, with our
new formulation it appears to be easier to improve
the accuracy of the boundary conditions, allowing
us to obtain higher order accuracy overall. The main
idea is to introduce slopes in each cell and use
piecewise linear approximativns in place of p.ccewise
constanis to define the fluxes. Near the boundary we
can casily estimate slopes in the tangential direction
along the wall by differencing values in the inboxes
that we have defined above.

These improvements are still being invectigated
and will be reported in detail elsewkere. Here we will
only compare results obtained with the method as we
have described it and results obtained using the same
interior method with the wave propagation boundary
conditions described in earlier popers.

4. NUMERICAL RESULLTS

We show one representative test case. a supersonic
shock going around an expansion corner. We also
show the steady state solution obtained at lacge times.
The exact rarefaction wave solution is a simple wave
and can be computed following Sec. 6.17 of
Whitham," for example.

The geometry we use is the rectangle {0, 1.32] x
[0. 0.8] with a solid wall at

0.3 x <0.1
0.1 <£x<0.
0.7<xx<1

0.3(1 = (x =0.1))
0.192 - 0.36(x —0.7)

Vo=

The initial conditions consist of a Mach 2.31 shock
at x =0.06 with left and right states

pt=51432, ul=204511, ut=0,

pt=9.04545

and

We take h =0.02 (66 x 40 grid) and a time step
k =0.002. This corresponds to a Courant number of
roughly 0.37 relative to the regular cells with area / °.
~or the crude form of Godunov's method used here.
the stability restriction requires a Courant number of
less than 0.5. The smallest cells near the boundary
have an area of roughly 10 A°.

Figure 6 shows numerical results at time + = 0.4, as
the shock is rounding ihe corner. Results obtained
with the wave propagation boundary conditions are
shown in Fig. 6a, while Fig. 6b shows the results
obtained with our new approach. These results are
very similar. Slight discrepancies can be seen near the
wall just around the shock. rFor this problem. both
sets of boundary condiiions worked well. We have
also performed tests on other problems where the
wave propagation method shows instabilities and
have observed no such difficulties with the new
method.

Figure 7 shows the steady state resuits obtained
after many iterations of the time dependent code (no
attempt has been made so far to accelerate converg-
ence for steady state solutions). We only show the
results with our new houndary conditions. The wave

Fig. 6. Shock propagation results at + =0.4. (a) Using the wave propagation boundary conditions.
(b) Using the new boundary conditions.

(a)

T T 7 T
9 (b) N
7+ -
St —
3 " 1

0 04 08 12

Fig. 7. Steady state results. (a) Pressure contours. (b) Pressure along the wall. The solid line is the exa~t
olution. + indicates the numerical solution.

Boundary conditions for Cartesian grid calculations 31

propagation boundary conditions give very similar
results. We use a coarser grid than in the previous
example (A =0.04) in order to demonstrate that we
achieve reasonable accuracy along the boundary even
with a relatively coarse piecewise linear representation
of the boundary. We also use a larger computational
domain, [0, 2] x [0, 1.6], to minimize the impact of the
far-field boundaries. The true solution is a rarefaction
wave originating from the portion of the boundary
with nonzero curvature. In the exact solution the
contour lines would be straight lines. Our results are
contaminated by effects from the far-field boundary.

Near the solid wall the contour lines appear to
show a boundary layer. This is an artifact of the
graphics routine, which assumes the data are on
a uniform grid at cell centers. Our data near the
boundary should be viewed as an approximation to
the pointwise value at the center of mass of the
irregular cell, not at the center of the full Cartesian
cell.

In order to examine tke accuracy at the wall,
Fig. 7b shows plots of the pressure along the bound-
ary, plotted against arclength. To obtain a boundary
pressure, the cell value U, and the reflected value
A(L,) are used to solve the one-dimensional
Riemann problem normal to the wall in each irregular
cell. The resulting pressure p* is used as the boundary
pressure. Figure 7b shows these results and also the
exact solution (to machine precision) calculated using
the theory of Ref. 11

In more complicated computations we use adaptive
grid refinement to obtain high resolution results with
minimal effort. The boundary conditions described
here can also be used in conjunction with the adaptive
Cartesian grid code described in Refs 1 and 2.

Acknowledgments —It is a pleasure to acknowledge several
stimulating conversations with John Bell and Phil Colella.

The authors were supported in part by NSF Grants ASC-
8858101 and DMS-8657319, AFOSR Grant 86-0148, and
DOE Grant DE-FGO02-88ER25053. This work was also
supported in part by NASA Contract NASI-18605 while
the authors were in residence at ICASE, NASA Langley
Research Center.

REFERENCES

1. M. Berger and R. J. LeVeque. “An adaptive Cartesian
mesh algorithm for the Euler equations in arbitrary
geometries,” AIAA paper AIAA-89-1930, 1989.

2. R. J. LeVeque. "Cartesian grid methods for flow in
irregular regions,” in Numerical Methods in Fluid Dy -
namics 11 (edited by K. W. Morton and M. J. Baines).
pp. 375-382, Clarendon Press. Oxford.

3. R.J. LeVeque, "High resolution finite volume methods
on arbitrary grids via wave propagation,” Journal of
Compuztational Physics 78, 36-63 (1988).

4. H. H. D. Clarke and M. Salas, "Euler calculations for
multielement airfoils using Cartesian gnds.” AIAA
Paper 85-0291. 1985.

5. B. Wedan and J. South, A method for solving the
transonic full-potential equations for general configur-
ations,” Proc. AIAA Computational Fluid Dynamics
Conference. 1983.

6. M. J. Berger and P. Colella, “Local adaptive mesh
refinement for shock hydrodynamics, “Journal of
Computational Physics 82, 64-84 (1989).

7. R. J. LeVeque, "A large time step generalization of
Godunov's method for systems of conservation laws,
SIAM Journal of Numerical Analysis 22, 1051-1073
(1985).

8. S. F. Davis, A rotationaily biased upwind difference
scheme for the Euler equations.” Journal of Compu-
tational Physics 56, 65-92 (1984).

9. D. W. Levy, K. G. Powell and B. van Leer. “An
implementation of a grid-independent upwind scheme
for the Euler equations,” AIAA Paper §9-1931-CP.
1989.

10. K. G. Powell and B. van Leer. "A genuinely mulu-
dimensional upwind cell-vertex scheme for the Euler
equations.” AIAA Paper 89-0095. Reno. 1989.

Il. G. Whitham. Linear and Nonlinear Wares. Wiley
Interscience, New York, 1974.

Reprinted from JOURNAL 0F COMPLTATIONAL P}«vsnc‘s Vol 82, No | May 1989
All Righis Reserved by Academic Press. New York and London Printed in Belgium

Local Adaptive Mesh Refinement
for Shock Hydrodynamics

M. J. BERGER

Courant Institute of Mathematcal Sciences. New York Umwversuy.
251 Mercer Street, New York., 10012 New York

AND

P. COLELLA

Luwrence Livermore Laboratory, Livermore. 94530 Culiforma

Reccived September 8, 1987: revised May 20, 1988

The aim of this work 1s the development of an automatic, adaptive mesh refinement strategy
for solving hyperbolic conservation laws in two dimensions. There are two main difficulties in
doing this. The first problem 1s due to the presence of discontinuities in the soluuon and the
effect on them of discontinuities in the mesh. The second problem is how to organize the algo-
rnthm to minimize memory and CPU overhead. This is an important consideration and will
continue to be important as more sophisticated algorithms that use data structures other than
arrays are developed for use on vector and paralilel computers. 1989 Academic Press, Inc

1. INTRODUCTION

In this paper. we present computations that use adaptive mesh refinement
to solve multidimensional. time dependent shock hydrodynamics problems.
Complicated structures such as multiple Mach reflections arise in these problems.
Adaptive techniques are essential for our computations in order to adequately
resolve features in the solution within today’s computer limitations.

Our starting point will be the algorithms in (6] for adaptive mesh refinement for
hvperbolic equations on rectangular grids. In this approach. the refined regions
consist of a small number of rectangular grid patches with finer mesh spacing than
the underlying global coarse grid. These rectangular subgrids contain points where
the error in the coarser grid solution is too high. and other points as well. We use
rectangular subgrids so that we can use integration methods for rectangular grids
whose convergence properties are well understood. These methods can be made
quite efficient on vector and parallel computers. In addition. rectangular grids have
a simple user interface. We can use the same integrator on fine and coarse grids. By
separating the integrator from the adaptive strategy. an off-the-shelf integrator can

0219991 %9 S3on
Copyright ey s v ademie Prass Ing
Al rgnts 0 mznrcg ot poLey tarm eeserned

LOCAL ADAPTIVE MESH REFINEMENT 63

be used without modification. This eliminates much of the problem specific work in
doing adaptive calculations.

The present work differs from that in [6] in several respects. The main one is
that we are computing unsteady flows with shocks. so that maintaining global con-
servation form is a primary consideration. The second difference is that the nested
refinements we use have boundaries coinciding with the grid lines of the underlving
coarse mesh. This greatly simplifies the maintenance of conservation over the
former approach. where the refined subgrids were allowed to be rotated with
respect to the coarse grnid. Third. great care was taken to obtain an efficient
implementation on a supercomputer. The main difficulty with adaptive methads is
the need for data structures not usually found in numerical software. We felt the
program complexity was high enough to justify the effort of devising as general and
automatic an approach as possible.

Earlier work along the lines of the present work was done by [7] in one dimen-
sion. and [14] for scalar problems in two dimensions. [19] have also compute
transonic flow in two dimensions with grid embedding. However. in the latier 1.
approaches. the grids were not restricted to rectangles. The data strictures. and
therefore the efficiency of such an approach. are quite different. Our mothod o
adaptivity through grid refinement is in contrast to methods that adapt the
moving grid lines into one region, leaving a coarser region somewhere else | !
[3.13. 20. 8]. Such methods try to get the most accurate solution for a fived . v
whereas our approach tries to attain a fixed accuracy for a minimum cost Bo*
approaches have their advantages and disadvantages. The so-called moviny -
point methods often have trouble maintaining a smooth grid. Regularity term-
penalty functions used to regularize the grid add overhead and reduce the uimp: (0.
of these methods. Local grid refinement. on the other hand. has the drawhacs -
needing special equations at grid interfaces. In a method where a fixed num».:
grid points are used during a computation. the user must initially guess at wha «
be un adequate number of points to resolve features in the solution thut mav .o
later. With local grid refinement. grid points are added or removed as necess.r

In the numerical experiments shown below. we have combined this adu .
mesh refinement strategy with the high resolution difference scheme of [1w
develop an almost automatic software tool for solving gas dvnamics pronicn .«
two space dimensions. A reasonable question is. why s an adaptive method ned o
given that the difference scheme used. a second-order Godunov-tvpe e~
already has quite high resolution? Converselv. if adaptive methods are uscud
such complicated and expensive difference schemes really necessary? The ansao .«
that both components are necessary to obtain well-resolved results tor s
hydrodvnamics. [t has been demonstrated [22] that the more compli.c
Godunov-type schemes give more resolution per computational dollar than sin:pic:
schemes such as Lax-Wendroff. Given that a high quality scheme 15 neceswir
adaptive mesh refinement can then concentrate the computational effort in reonons
where 1t 1v most useful. Since Godunov-tvpe methods are mere expensive i
simple schemes. the computational savings of selective refinement can be sub<tn-

rid ey

K
¢

66 BERGER AND COLELLA

tial. Some of the computations presented here could not have been done reasonably
without the use of an adaptive solver.

In the sections that follow, we describe the adaptive mesh refinement (AMR)
algorithm for integrating a general hyperbolic system of conservation laws

u,+ fluy +glu), =0 on Dc< R?
Bu=»5 on ¢D.

Our numerical examples involve the Euler equations for gas dynamics, where

p pu pr
u . u - pur
u= p . flul= P P R glu)y= N
pr put pro+p
oE puE + up ptE+up

and

’ 2+ 2
p=h‘—1>(pE—p(u - >>

Although our work to date is in two space dimensions, all the algorithms extend
to three dimensions. and in fact it seems possible to implement a general code
where the number of dimensions is input.

In the next sections we describe in detail the adaptive mesh refinement algorithm
and its implementation. We give enough detail for users interested in modifying the
algorithm. using our code. or writing their own. First. we discuss the structures that
define our grid hierarchy. Next. we describe the integration scheme for such a
(static) grid hierarchy. Third. the grid generation and error estimation procedures
used to generate the grid hierarchy itself are presented. Our error estimation proce-
dure is theoretically justifiable only for smooth solutions. We discuss variations of
it that may prove useful for problems with shocks. In the last section we present
numerical experiments along with a detailed timing analysis of the runs. This
program is being used to study Mach reflection in two dimensions with resolution
not previously possible. New results. a triple Mach stem configuration at low -.
have been observed.

2. GrID DESCRIPTION

AMR is based on using a sequence of nested. logically rectangular meshes on
which the pde is discretized. In this work. we require the domain D to be a finite
union of rectangles whose sides lie in the coordinate directions. We assume here
that all the meshes are physically rectangular as well. although this is not essential.
The method discussed here can be implemented on a general quadrilateral mesh.

LOCAL ADAPTIVE MESH REFINEMENT 611"
(See. for example, [5]). We define a sequence of levels /=1, ... /,,,. A grnd G, has :"
mesh spacing A,. with level 1 coarsest. and define

With an abuse of terminology describing a grid and the domain it covers. we have
G,= _.G..=D. the problem domain. If there are several grids at level |. the gnd
lines must “align™ with each other: that 1s. each grid 15 a subset of 4 rectangulur
discretization of the whole space.

We mav often have overlapping grids at the same level. 50 that ¢ -~ G . =4,
1 # k. However. we require that the discrete solution be independent of how ¢ s
decomposed into rectangles. '

Grids at different levels in the grid hierarchy must be “properly nested.” This
means

(i1 a fine grid starts and ends at the corner of a cell in the next coarser zrid.

{11y There must be at least one leve!l /~ | cell in some ievel /— | gnid separat-
ing a gnd cell at level / from a cell at level /— 2. in the north. south. east. and west
directions. unless the cell abuts the physical boundary of the domain.

Note thut this proper nesting is not as stringent as requiring a fine grid to bhe
contained in only one coarser level grid. For example. in Fig. 2.1, there i1s one gnd
at level 3. G.,. Every grid point in G, , is contained in one of the two gnds ut
level 2, G.. or G, ».

Grids will be refined in time as well as space. by the same mesh refinement ratic
r. where r=1x, | 1x.. Thus.

I8 VSR _ At

Jx o dx ' _J.\“

and so the same explicit difference scheme 1s stable on all grids. This means more

b, 21 Gnd G, . spans two coarser gnids but 1s properly level nested.

f/ .

68 BERGER AND COLELLA

time steps are taken on the finer grids than on the coarser grids. This is a
reasonable requirement from the point of view of accuracy, since for many dif-
ference schemes. the leading terms in the spatial and temporal truncation error are
of the same order. In addition, the smaller time step of the fine grid is not imposed
globally. In this implementation we only allow an even refinement ratio. This
simplifies the error estimation procedure described later, by avoiding the need of
distinguish between an odd and even number of grid points in a grid.

At discrete times the grid hierarchy may be modified. The finest grids need to be
changed ("moved.” deleted if necessary) most often. When grids at level / are
changed. all finer level grids are changed as well. but the coarser grids may remain
fixed. New grids at level / may replace the old ones, but they are still subject to the
same “proper nesting” requirement.

A point (x. r)e D may be contained in several grids. The solution u(x, ») will be
taken from the finest grid containing the point. If there are several equally fine grids
containing the point. any fine grid value will suffice, since the solution on the
intersection of overlapping fine grids will be identical.

3. INTEGRATION ALGORITHM

AMR assumes there is a basic, underlying, conservative, explicit finite difference
scheme of the form

w-t Jt 4t

u,, —u:/“;‘[:/’l2.1—F1412./)_I(G:./<-IZ‘Gl./~12)‘ t

The values u, , are cell-centered quantities. Each cell is defined by its four corner
grid points. If there are no refined regions, then Eq. (1), augmented by the dis-
cretized physical boundary conditions. defines the time evolution on a single grid.

With multiple grids. each grid is separately defined and has its own solution
vector. so that a grid can be advanced independently of other grids. except for the
determination of its boundary values (see Section 4). The integration steps on dif-
ferent grids are interleaved. so that before advancing a grid to time ¢+ 4¢., all the
finer level grids have been integrated to time . Scheme (1) is still initially applied
on every grid at every level, but the results will need to be modified in case

(i) the cell is overlayed by a finer level grid: or
fii) the cell abuts a fine grid interface but is not itself covered by any fine grid.

[n case (i), the coarse grid value at level /—1 is defined to be the conservative
average of the fine grid values at level / that comprise the coarse cell. After every
coarse integration step. the coarse grid value is simply replaced by this conservative

LOCAL ADAPTIVE MESH REFINEMENT 69

average. and the value originally calculated using (1) is discarded. For a refinement
ratio of r. we define

r—1r-1

l

coarse fine

Wi, == Z Z Ui v pm g
rp-ny=o0

where the indices refer to the example in Fig. 3.1. We could define a coarse cell u
at muitiples of the fine time step in the same way. but this is not necessars. This
is equivalent (within roundoff error) to redefining the coarse fluxes around the
overlayed coarse grid point to be the sum over the fine time steps of all fine grid
fluxes calculated on any boundary segment for that cell. However. this implementa-
tion would use extra storage to save the fine grid fluxes. By updating the solution
values themselves. no extra flux storage is needed.

In case (i1} the difference scheme (1) itself that is applied to the coarse cell must
be modified. According to (1). the fine grid abutting the coarse cell has no etfect.
However. for the difference scheme to be conservative on this grid hierarchy. the
fluxes into the fine grid across a coarse.fine cell boundary must equal the flux out
of the coarse cell. {This conservative procedure has been discussed by [17]. A fuller
discussion of conservation at grid interfaces 1s in [4].) We use this to redetine the
coarse grid flux in case (ii). For example. in Fig. 3.2, the difference scheme at point
i, j should be

u.’,/‘l + J’Coarse)

At
=u:./(”_ 1

coarse
X

[

1
F:oil./‘t)_F Z z Fk«‘.:‘m<-;'l[+q“”"mc|

4=0p=y

At
——==0G,...0=-G,, 0]

.

J

121

dy

where J1x and 1y are coarse spatial step sizes. The double sum is due to the refine-
ment in time: for a refinement ratio r. there are r times as many steps taken on the
fine grid as the coarse grid. If the cell to the north of (i, j) were also refined. the
flux G, , ., » would be replaced by the sum of fine fluxes as well.

Fic. 3.1. The coarse cell value 1s replaced by the average of all the fine grid points in that el

70 BERGER AND COLELLA

B

Fic. 3.2, The difference scheme is modified at a coarse cell abutting a fine grid.

This modification is implemented as a correction pass applied after a grid has
been integrated using scheme (1) and after the finer level grids have also been
integrated. so that the fine grid fluxes in (2) are known. The provisional coarse flux
used in (1) is subtracted from the solution u{°*"(+ 41 44). and the fine fluxes are
added using Eq. (2). To implement this modification, we save an array 3F of fluxes
at coarse grid edges corresponding to the outer boundary of each fine grid. After
the coarse grid fluxes have been calculated by (1), we initialize 8F with

5 o coarse
OFI“-):.‘/'—— l-12 {3)

At the end of each fine grid time step, we add to JF, ., the sum of the fine grid
fluxes along the (i + 1 2, j)*" edge.

. . |
()F:OI'_‘,;:=0F1-IZ,/+’.—:Z Ff‘_‘f]:‘m,p.
P

=0

Finally, after r fine grid time steps have been completed. we use 3F,. | ., to correct
the coarse grid solution so that the effective flux is that of (2). For example. for cell
{i+ 1. j). we make the correction

. Y.
cQarse . -parse coarse o
:‘l.;’ : +_0Ft"[:"

" ST

voarse
If the cell i+ 2./ were refined, we would also make the correction

At
OArse L o vodrse Loarse o
U= ———0F, _:x
X

Nogrse

and similarly for the vertical fluxes.

LOCAL ADAPTIVE MESH REFINEMENT 71

The boundary fluxes JF are stored in a vector associated with every fine grid. In
the initialization step (3). there may be several coarse grids that set JF. Since all
fluxes calculated at a given edge and level are identical (up to roundoff error) and
are independent of the particular grid on which they are calculated, we simply use
the last value assigned. At the end of a time step. we may have several fine grids
available to update a given coarse cell edge. since overlapping grids are permitted.
For this reason. we use a matrix to indicate the edges of a coarse cell that have
already been updated and only perform the update once for each edge. As before.
it does not matter which fine grid actually performs the update for any given edge.
so the result is independent of the order in which the fine grid list is traversed. This
modification is a negligible amount of work. taking approximately 0.3V, of 4
typical run time. On machines with a scatter gather operation. this should proceed
even faster.

We emphasize that this work 1s done as a “fix up” step after each grid is updated
using scheme (1). In this way. the integrator can be separated from the additional
work which is needed because of the grid hierarchy. A new difference scheme can
be substituted by a user unfamiliar with and not interested in the inner working-
of the AMR program.

3. BouNDARY CONDITIONS

A discussion of boundary conditions completes the description of the integration
procedure on a multiple grid hierarchy. Let the interior integration scheme huve
stencil which is centered in space, with « points to ¢ach side. To compute the new
time step. AMR provides solution values at the old time step on a border o1 <clis
of width « intersected with the physical domain. The user must supply the code ¢
compute any additional information needed to implement the boundary condit: -
For example. if boundary conditions are imposed by extrapolation. the user wo .l
provide the extrapolated values for points outside the domain.

For a gnd at level /. the bordering cell values are provided using values v
adjacent level / grids where they are available: otherwise. the AMR algorithm .om

values. If necessary. we also interpolate linearly in time.

[t may happen that a point (x. v} is inside the domain D. but one or more .1
rounding coarse grid points needed for the bilinear interpolation are outsid. \.
before. we assume there is a user-supplied routine that can provide exterior v wars.
grid points given some interior points.

Our implementation partitions the required border cells at level / into rectunaula:
boundary patches. For each rectangular piece we:

111 find solution values from level /— 1 grids on a slightly larger rectun_uiar
piece enclosing the border cells:

1y linearly interpolate for the border values:

72 BERGER AND COLELLA

‘ (iti) if there are fine grids at level / that could supply some values (say an
adjacent fine grid), overwrite the linearly interpolated values from step (ii).

In step (i), most of these coarser level values are found by intersecting the rec-
tangular patch with level /-1 grids and by filling the overlapping pieces. However,
it may be necessary to go to even coarser grids to supply these level /~ | values.
This is done by applying (i) to (iii) rccursively to the smallest rectangular patch
containing the unfilled cells.

For efficiency. it is important that the boundary values are supplied on a rec-
tangular patch at one time and not computed a point at a time. Even though the
amount of work is proportional to the boundary of each grid, our initial implemen-
tation took 40% of the run time and had to be rewritten. By working on grid
patches, the bulk of the memory transfers are done in blocks, and the number of
subroutine calls is minimized. This is particularly important on the Cray. where
there is a substantial performance penalty for single word accesses and subroutine
calls. :

. . 5. CREATING THE GRID HIERARCHY

*

At specified time intervals. an error estimation procedure is invoked. and a new
grid structure is determined. If there are several nested levels of refined grids, the
error estimation and grid generation procedures are recursively applied on each
level, from finest to coarsest, to (re-)create the fine grids at the next level. The error
estimation procedure (see Section 6) produces a list of coarse grid points with large
error estimates, indicating that a fine grid patch is needed in that region. Every
flagged coarse grid point should be inciuded in a finer grid. Our grid generation
algorithms try to produce grids that have as little overlap as possible, so that the
area that is unnecessarily refined is as small as possible. The algorithm also strives
for a small number of patches that are as large as possible, to reduce the computa-
tional overhead. It is difficult to find a foolproof algorithm that satisfies these often
conflicting goals. However. we have developed heuristics that have been successfully
tested in many different applications. A much fuller discussion of grid generation i
in [3]. Here. we will describe the particular set of algorithms that produced the
numerical results in Section 7.

Suppose there is a base level, /..., where grids will stay fixed, but that the fincer
levels from [y, + | t0 lg, may be "moved.” Starting with the finest level grids, we
estimate the error, using a procedure described next. If there are points where the
error estimate is too high, these points ure flagged. and a level /p + | grid will be
needed. Next. we estimate the error on the existing /;.., — | grids. If there are
flagged points. a different level /g, grid will be created, making sure that if there
are any level /5., + | grids, they are preperly contained in the level /., grids. This
continues until the error is estimated on the base level grids. Thus, it is only
possible to add one new level at a time. although many levels may be removed

LOCAL ADAPTIVE MESH REFINEMENT 73

during a single regridding operation. (At the initial time however, where the initial
data is known for all x, » and not just at coarse grid points. it is possible to add
many levels at a time. This is essential for some problems. where the error can
depend entirely on the initial conditions.)

In more detail, our regridding algorithm performs the following steps:

(1) Adds the buffer zone. A buffer zone of unflagged points is added around
every grid. This ensures that discontinuities or other regions of high error do not
propagate out from a fine grid into coarser regions before the next regridding time.
This is possible because of the finite propagation speed of hyperbolic systems. The
larger the buffer zone. the more expensive it is to integrate the solution on the fine
grids. but the less often the error needs to be estimated on the coarse grids and the
fine grids movec. The buffer zone is added by flagging all coarse grid points that
are sufficiently close to flagged points with high error estimates. A buffer zone of
two cells in each direction is tvpical. By flagging neighboring points. instead of
enlarging grids at a later step. the area of overlap between grids is reduced.

12y Flags every cell ur level | corresponding to an interior cell in u level | =2
grid. This will maintain proper nesting. by ensuring that there will be a new level
{ =1 grid containing every point in the level /+ 2 grid. even if the level / grid error
estimation did not report a high error. This procedure ensures that the fine grid
error estimates are used instead of the coarse grid estimates at the same point. To
ensure proper nesting. points within one ceil of a non-physical (interior) boundar:
of G. are deleted from the list of flagged points.

{3) Creutes rectangular tine grids. The grid generator takes all the flagged
points as input. and outputs a list of corners of rectangles that are the level /|
grids. Nearby points are clustered together. and a fine grid patch spanning cach
cluster 1s formed. These clustering algorithms use heuristic procedures described
separately below.

(4) Ensures proper nesting. The new fine grids are checked to ensure that
they are properly contained in the base level grids. If they are not. the new gnd 1s
repeatedly subdivided until each piece does fit. Since the flagged points originally
were inside the base grid. at least one cell from the boundary. the new grid contain-
ing the flagged points must eventually lie inside as well. Since the base level grids
did not move. step {2) cannot be used to ensure the proper nesting of this ievel.
This problem only arises when the base grids are a non-convex union of rectangles.

Step (3) is the difficult one. Since problems in gas dynamics develop
1-dimensional discontinuities. we have streamlined the more general grid generation
procedures of [3] for this particular application. The procedure we use here
includes a hisection step and a merging step. Initially. a grid patch is formed around
the entire list of flagged cells on a given level. The efficiency of the patch 1s
measured by taking the ratio of flagged cells to the total number of cells in the new
grid. If this efficiency rating is less than an input minimum efficiency (e.g.. 60°0).
the long direction of the rectangular grid is bisected. and the flagged points are

-t

74 BERGER AND COLELLA

‘sorted into two clusters depending on which half they are in. The process is
repeated on the two clusters. The bisection steps ends when each cluster has an
acceptable efficiency rating.

The bisection step uses no geometric information. so although each grid may be
“acceptable™ by itself. the resulting grid hierarchy may not be optimal. For this
reason. the bisection is followed by a merge step. In addition to an absolute
efficiency criterion. grids are merged if the new grid is relatively more efficient than
the two smaller gnds. The cost function we use to measure this is proportional to
the cost of an integration step on each grid. Onan m by ngrnid. tm+ 1) by (n+ 1)
fluxes are calculated. with perhaps 1000 vector operations per flux. In addition
there is a cost associated with the perimeter of each grid: finding interface condi-
tions. conservative updating of coarser grids. and special slope calculations that are
done only for boundary fluxes. Some of this work uses scalar arithmetic. at least on
machines such as the Cray 1 that does not vectorize indirect addressing and
gather scatter operations. The total cost associated with a grid is proportional to
mn +m =+ n. Grids are merged if the single resulting grid has a smaller cost. The
merging step ends when no pair of grids can be successfully merged.

Although this procedure is somewhat ad hoc, it has been successfully used on
several different tvpes of problems. The grid generation routines. not including the
solution initialization on each grid or the error estimation to produce the flagged
points. account for approximately 1.7° of the CPU time for a typical run.

6. ERROR EsTiMATION

In [6]. estimates of the local truncation error were used to select those gnd
points on a given level with unacceptably large errors. If the solution w(x. ¢) is
smooth enough. the local truncation error utx.r+&k)—Quix. t} on a mesh with
spatial step 4 and time step A satisfies

WXt ~h) = Quix. 1) =kle (X, DkY +cslx. (V) + KOk + h? ™1
sl) +kOk? ™ +h*" '),
where the leading term is denoted by . Here we assume our difference method Q

has order of accuracy ¢ in both time and space. If is smooth enough. then if we
take two time steps with the method Q. to leading order the error is 2t .

uix. =2k = Q utx, 1y =2t + kOthk? "+ b),

Let Q., denote the same difference method as Q but based on a mesh widths of 24
and 2. Then

Wt =2k = Qaulx 1) =29 = Oth? "),

LOCAL ADAPTIVE MESH REFINEMENT

By taking two steps with the regular integration scheme. and one “giant” step us;
every other grid point, the difference

Qutv. 11— Qs uix, 1)

R

- -

=+ -0th ")

gives an estimate of the local truncation error at time 1. We emphasize that 11 i\ p
necessary to know the exact form of the truncation error te.g. /7 oniv
order

This procedure is easily implemented in AMR for the conservatne mite d;
ference methods presented here. The values on a gnid at a given level ure prowec
onto a virtual grid coarsened by a factor of two in each direction. The ~ouition
both grids is ad+anced in time: the onginal grid for two time si:ns. the Coursene
grid for one step using a ume step twice as large. The difference teiween the ol
uons obtained on the two grids at each pomnt is proportional to the loce runcatio
errot at that point. At coarse cells where the difference between the ©x s

values exceed some tolerance. all four cells contained in the real grid are Huzoig s
requiring refinement. Notice that this estimation procedure 15 independers & th
finite difference method actually used. as well as the pde. One disadvantizce ok
procedure s that it always predicts a large error in the neighborhood . c. e
discontinuities. It 1s easy to construct examples for wh:_ . the procedurs o ne

above will give values on the coarsened gnd whiclh differ pomintwise »v oo 0 e
independent of the mesh spacing in the neighborhood of a shock In oo

leads to refinement of the mesh at all discontinuities with strength oo

sUMe minimum.

Theoretically. one could define 4 distributional error by averaging "o, :
between the two solutions over some region centered at the given ool - -,
x Orly relative to the mesh spacing. We have i 'sed vanous techmicues
ing out such a procedure all of which are equivalent to ignoring the po e
estimate in the neighborhood of those discontinuities which. by some
are considered adequately resolved. For problems in shock hvdrods e
shock discontinuities. and not slip surfaces or contact disconunuities o0 -
satisfy any such criteria. This 1s be=cause conservatnne fimte dufferen. - g
applied to shocks mimic the convergence of characterstics in the anai. " . "k
so that the shock spreads only over a fixed number of zones indepena.: i

mesh spacing and time. Thus. for example. 1t is unnecessary o refine the o0
neighborhood of 4 shock separating two constant states. In contras: . \
4
L]

necessary to refine at linearly degenerate discontinuities since the numne 0 s
over which they spread is an increasing function of time.

There 15 a second set of difficuluies with refinement 1n the presence o ng
shocks There is evidence that shock-capturing methods are zeroth-order o Us
e that the fluxes computed in the neighborhood of the shock differ =y © o
the evact Muxes at a given time step {21, 16]. These Oty errors couid o0 - e

76 BERGER AND COLELLA

woves associated with the characteristic families crossing the shock. sending O 1
pointwise errors into the postshock region. For shocks computed on a single
uniform grid. this does not occur. because the same Ofl) errors are committed on
successive cell edges with a phase lag, so that errors in the time integral of suc-
cessive fluxes cancel upon differencing. However, when a shock intersects an inter-
face between two grids with different mesh spacings. the O(1) errors in the ume
integrals of the fluxes on each of the two grids will be different. generating Oyt
errors 1n the solution propagating into the postshock state. [n practice. we have
observed that the amplitude of the spusious waves generated mn this fashion i
proportional to the amplhitude of the jump in the characteristic quantities carried by
characteristics crossing the shock. In practice. then. there is usually a threshodd
shock strength befow which the errors generated by a shock crossing a grid discon-
tinuity are acceptable and above which the errors generated are too large. For the
latter shocks. they must be refined evervwhere. if they are to be refined anyw iere

We illustrate this with an example where we force the algorithm not to refine the
grid abcve a certain height. This forces the strong incident shock. with a4 shock
Mach number of {0. to pass through a fine grid boundary into the coarse grid. The
oscillations caused by this are apparent in the contour plots of Fig. 6.1 and the plot
of Fig. 6.2 for a fixed value of 1.

Combining the two considerations given above. a fairly general refinement
strategy is to use the local truncation error estimate described above. but ignore it
in the neighborhood of gas-dvnamic shocks whose strength lies below ~ome
predetermined threshold. This has the effect of refining, possibly unnecessarily. all
shocks whose strength is above the threshold. We have found that this strategy
works acceptably well if the coarsened base grid is sufficiently fine. so that the
waves are well separated. A much simpler strategy. which s applicable in a large
class of problems. is simply to use the user's knowledge of the problem instead
the truncation error estimates. For example. in the shock reflection problems gnen
below. the solution is made up entirely of smooth waves and weak shocks a certain
distance behind the incident shock. Consequently. we simply ignore the locul
truncation error estimate in that region.

Fig 6.1 Contour plot showing the effects of a strong shock passing through a gnid boundarn
p 4 2 g g)

LOCAL ADAPTIVE MESH REFINEMENT 7

Fi, a2 Densiy profile for a honizontal line shghtly below the gnd interface intersecting the sk

7NUMERICAL RESULTS

We choose as our test problem reflection of a planar shock in an ideal ga~ by an
oblique surface. In this problem. a straight shock 1s inctdent on a perfectly reflecting
surface. At later times. a reflected wave pattern i1s generated. depending only on x
M. and ;. where x is the angle between the direction of propagation and the reflec.
ting surface. M, 1s the incident shock Mach number. and ; 1s the ratio of speaific 3
heats. The solution to this problem s formally self-similar. depending on v, 1o,
only in the combination (x s, v 7). Thus. the tme dependence of the olution i g
given by a linear scaling of a fixed wave pattern with time. We are particulariy &s
interested in values of the problem parameters for which very complicuted ~mull :
scale structures are observed. o

The underlying integration method in our AMR calculations s a second-order
Godunov method described in [10]. In our calculations. we make use of the L
that the regions where the small scale behavior can appear are locahzed in the
vicimity of the reflection point. Our procedure for estimatng the error 1s to medsute
the local truncation error of the density. except that we do not tag powts beyond
a4 certain distance behind the incident shock. This effectively restricts our refinement

78 BERGER AND COLELLA

TABLE |
Breakdown of Computational Times Obtained Using FLOWTRACE

Grid integration 78.29
Interpolation 1295
Qutput 287
Gnd updates 278
Grid generation 171
Memory management 0.59

to be in a window moving with the reflection point, and shuts off the grid refine-
ment ground the (weak) reflected shock.

The results presented here were calculated on the Cray XMP 22 at the LLNL
NMFECC. using the CFT 1.14 compiler. To obtain detailed diagnostic information
about where most of the time is spent in the calculation, we used the FLOW.
TRACE option of the CFT compiler in the first calculation below. The total ume
spent was 3674 seconds of CPU time. Table I shows a breakdown of the calculation
time into six categories: the integration routine. the interpolation routines (for con-
structing boundary conditions and initializing new fine grids). the updating routines
(fine grids updating coarse grids and for maintaining conservation across grid
interfaces). the grid generation routines. output routines, and memory management
routines.

The main result 1s that the integration step takes about 80° of the computa-
tional time. This figure includes integration steps needed for the error estimation.
However. measurements show that the latter is only 3% of the integration cost.
with actual useful integration steps accounting for 97% of the integration time.
Note that the error estimation cost is verv small despite the fact the error is
estimated at every other coarse time step. There are two reasons for this. First. over
90", of the cells being integrated belong to the finest level grids (level 3 in both
calculations), and the error is not estimated there. Second, since refinement is per-
formed in time as well as space. the overwhelming majority of the work is done on
the finest grid. Table [I shows the number of cell updates done on each grid level.
as well as the total number of cell updates done for error estimation.

We can thus obtain a rough estimate of the efficiency of AMR relative to com-
puting on a uniform grid. About 80° of the run time is spent integrating grids. The

TABLE II
Number of Cell Updates at Each Level

Level | 298 « 10°
Level 2 159« 10°
Level 3 113 % 10°

Error estimation 306 x 10°

LOCAL ADAPTIVE MESH REFINEMENT 79 |

finest level grids occupy only about 10% of the domain. Thus an equivalent
uniform grid computation would require a factor of 8 more CPU time. Of course
in this particular problem, one could omit computations ahead of the incident
shock. since the solution there is constant. saving approximately half the uniform
grid time. In general. this could not be done.

It is more difficult to compare memory usage with that of a uniform grid calcula-
tion. The integration algorithm used here requires five 2-dimensional grid arrays for
scratch space. 1n addition to the four required to store the conserved quantities,
so that the memory requirements for a uniform grid calculanon would be
93201600 x +.53x 10° words. In contrast. the maximum storage used in the
calculation performed here was 8.94 x 10 words. Much of the memory use in AMR
1s due to saving two time levels of the solution on each grid. It is possible to avoid -
the memory overhead of having full grid scratch arrays by breaking the calculation |
into pieces. (In fact. we effectively do this in the AMR calculations by restricting the ¥
size of any grid to be less than some pre-determined maximum. subdividing grids < -
that are too large.) However. this would introduce overheads and programming
complexities in the uniform grid calculation similar to those in AMR. In any case.
even if those overheads could be neglected and only four full grid arrays were 3
required. the memory required would be 2.0 x 10° words. a factor of 2.2 larger than ;
that required by AMR.

In Fig. 7.1. we show results for the case M, =10, x=30", - = 1.4 The domuin 35
a rectangle of length 2.0 by 0.4, with initial coarse grid spacing Jx = 4y =002 The
calculation ran for 149 coarse grid time steps. The error was estimated every other
step. with a buffer zone of one cell and a grid efficiency of 65°,. The error tolerance
was 0.02. The mesh was refined bv a factor of 4 in each direction at each grid leve
The finest grids in this calculation represent a factor of 4 increase in resolution m 4
each spatial direction over the finest grid calculation in [22]. Figure 7.1u shows the
location of the level 2 and 3 grids at time r=1.20. [n displaying the solution. «e
show two sets of plots. One is a contour plot of the full flow field. The other v un
enlargement of the region around the reflection point. This is the part ot the
domain covered by the level two and three grids. In both cases. the contour plots
are made using the finest available grid in the subregion. Due to the increased
resolution. we can now observe a non-self-similar Kelvin-Helmholtz roilup alorg
the principal slip line. This is to be expected. since this slip line 1s instabic The -
Keivin-Helmholtz rolls are formed near where the weak shock emanating from 5
second triple point impinges on the slip line. They then propagate along the wip =g
line and are eventually swept up into a large rollup at the tip of the jet. ulony "-e
bottom wall. -

Finally. in Fig. 7.2 we present results for M, =8 x=35 . =1.107. It has ~een
noticed [11] that the wave patterns associated with double Mach reflection hecome -
increasingly complex as 7 is reduced. The jet along the reflecting wall formed by th
slip line from the principal Mach triple point 1s more and more strong
accelerated. pushing the Mach stem out ahead of it. This leads to strongly roteg
tional supersonic flow and the formation of multiple Mach triple points The pre

80 BERGER AND COLELLA

Fig. 1. Shock reflection off an oblique wedge with =14, M =10. x=30": (a) Shows the grid
hierarchy: grid | 15 4 level | grid. gnids 6 and 34 are level 2 grids. and the rest are level 3 grids, at time
r=0.12 (b Densits. fuil low field. ic} Density, level 2 and 3 grids only. (d) Pressure, level 2 and 3 gnids

-

only. te) Entropy. level 2 and 3 gnds only.

LOCAL ADAPTIVE MESH REFINEMENT

Fig. ".1—Conunued

82 BERGER AND COLELLA

Fic. 7.2, Shock reflection off an oblique wedge with ; = 1.107. M, =8, x=35": (a) Density. full flow
field. at r =0.115. (b) Density. level 2 and 3 grids only, 7 =0.115. {c) Density. full flow field. at r = 0.230
td) Density, level 2 and 3 gnds only, +=0.230.

LOCAL ADAPTIVE MESH REFINEMENT 83

sent results represent a rather extreme example of this, with a total of seven Mach
triple points in the double Mach region. including a third triple point along the top
shock. The seven triple points are marked in Fig. 7.2d. This calculation gives some
indication of why adaptive mesh refinement is an important tool in these problems.
As 7 approaches one. the distance between the leading edge of the wall jet and the
main Mach stem becomes smaller and smaller. requiring more grid resolution in
that region. The value of ; in this calculation represents the limit of resolution.
given the resources available on the Cray XMP. The calculations in [11] using
uniform grids without mesh refinement. were not fully resolved for ; < 1.25. Even
with mesh refinement. at this low value of ;' the flow field is not fully resolved at
time +=0.115, in Fig. 7.2a and b. Only after running to time ¢=0.230. which by
self-similarity corresponds to increased grid resolution, is the solution adequately
resolved.

8. CoNCLUSIONS

The complexity of our AMR code might be intimidating to a new user. Not
counting the integration routine. our program consists of 3000 lines of Fortran.
However. a big code is not necessarily a fragile code. We have been careful to
develop AMR to make it automatic and robust. In addition, a user should be able
to use AMR without having to understand it all. This makes it important to
develop AMR in a modular way. A user should be able to plug in an integrator for
a new problem without knowing details about how the more computer science
oriented parts of AMR work. but knowing that these other parts will indeed work.
We have already demonstrated this modularity by using AMR to compute tran-
sonic flow in conjunction with FLOS52 [5] and to compute a combustion problem
with a simple induction time model for chemistry [2].

The most difficult problems will best be solved by combining several adaptive
techniques. Despite its more complicated data structures, AMR has already been
combined with the conservative front-tracking scheme of [9]. This enables tracking
of a strong incident shock, while using shock-capturing for the other discontinuities.
and avoids the mismatch of strong captured shocks crossing grid boundaries.
This combined approach is being used to study transition from regular to Mach
reflection. Finally. we intend to couple this method with the variational technique
of [8] Their mesh-moving technique would allow the underlying mesh geometry to
be approximately aligned with global features in the flow. leading to more efficient
refined meshes. However, the actual mesh refinement for error reduction would be
done with AMR. so the global time step penaity of moving mesh methods is not
incurred. Lastly. a major open question is how to use implicit difference schemes
with embedded grids for a time-dependent calculation. This will be needed to
compute solutions to hyperbolic-parabolic problems. such as the Navier-Stokes
equations at high Revnolds number.

84 BERGER AND COLELLA

ACKNOWLEDGMENTS

We thank Michael Welcome for assembling the graphics program for multiple grids used (o display
the numerical results. We thank John Bolstad for a careful reading of the manuscript. The first author’s
work was supported 1n part by the Department of Energy Contract DEAC0276ER03077-V and by the
Asr Foree Office of Scientific Research under Contract AFORSR-86-0148. The second author's work was
supported 1in part by the Office of Energy Research of the U.S. Department of Energy at the Lawrence
Livermore National Laboratory under Contract W-7405-ENG-48 and at the Lawrence Berkeley
Laboratory under Contract DE-AC03-76SF00098 and by the Air Force Office of Scientific Research
under Contract AFOSR-ISSA-870016. Phillip Colella wishes to thank the Courant Institute. which he
visited for five months under Department of Energy Contract DEACO276ER03077-V

REFERENCES

L8 Avserto ano §. FLanerTy, RPI Computer Science Report No. 85-21 (unpublished).

2.1 Bewe. PoCotkrka. J. TRANGENSTEIN, aND M. WELCOME. presented ag the 8th AlaA (FD
Conference. June 1987, Honolulu. HI: Lawrence Livermore Report UCRL-96443 (unpublished

3 M . BERGER. SI4 M J. Sct. Statist. Compur, 7, 904 (1986).

4. M. J BERGER, S{4M J Num. Anal 24, 967 {1987y,

3 M. J BERGER aND A, JaMEsoN. 4744 /. 23, 561 (1985).

6. M. J BERGER axD J. OLIGER. J. Comput. Phys. 53, 484 11984).

7. J. Boustan. Ph. D thesis. Department of Computer Science. Stanford University. Californu. 1982
runpublished 1.

8. J. U BrackBiLL aNo IS, SaLtzMan. J. Comput. Phys. 46. 342 (19821,

9. 1. CHERN axD P Coterra, J. Comput. Phys.

10. . Corerra. Lawrence Berkely Laboratory Report LBL-17023: J. Comput. Phys.

[T, P. CouLELa anD H. Graz. in Proceedings, 91th Inil. Conf. Numerical Methods in Flud Dynumi. -
June 1984: Lecture Notes in Physics Vol. 218 (Springer-Verlag. New York Berlin, 1985).

12. P. CoLLELa axp P. WooDwWaARD. J. Compur. Phys. §9. 264 11985).

13, H. A Dwyer. ALAA Paper No. 83-0449 (unpublished .

14. W D Gropp. S/43 J Sci. Staust. Compui. 4. 191 119801

15 K. MILLER aND RN, MILLER, STAM J. Num. Anal. 18. 1033 (1981).

16, W. NoH. Lawrence Livermore National Laboratory Report No. UCRL-52112. June !97%
tunpublished

[7.S. OsHER a~p R. SaNDERs. Math. Compur. 41. 321 (1983).

15. M. M Rai wwp DA ANDERSON, J. Comput. Phys. 43, 327 (19811,

19 W J. Usas anv E M. MURMAN, ATAA Paper No. 83-1946-CP. Tulv 1983 (unpublished).

00K H WinNKLER. PR DY thesis Unnvcoay of Gottingen, 1976 (unpublished).

21 P WooDWARD. 1n Proceedings Nato Workshop i Astrophvsical Radiauon Hydrodvnamics. Muni
W. Germanv. Nov. [983. Lawrence Livermore Report UCRL-90009. August 1982 (unpublished

22 P. WoopwaRD aND P CoLeLLa. J. Comput. Phys. 54, 115 (1984,

Printed by Catherine Press. Ltd.. Tempelhof 41, B-8000 Brugge. Belgium

AlAA-89-1930

An Adaptive Cartesian Mesh Algorithm for the
Euler Equations in Arbitrary Geometries

M. Berger

Courant Institute of Mathematical Sciences

New York, NY

R. LeVeque

University of Washington

Seattle, WA

AIAA 9th Computational Fluid
Dynamics Conference
Buffalo, New York / June 13-15, 1989

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics
370 L’Enfant Promenade, S.W., Washington, D.C. 20024

89-1930-CP

An Adaptive Cartesian Mesh Algorithm for the Euler Equations in
Arbitrary Geometries

Marsha J. Berger

Courant Institute of Mathematical Sciences

New York University
251 Mercer St.
New York, NY 10012

Abstract

We present a Cartesian mesh algorithm with adap-
tive refinement to compute flows around arbitrary
geometries. Cartesian meshes have been less popular
than unstructured or body-fitted meshes because of
several technical difficulties. We present an approach
that resolves many of these problems. Cartesian meshes
have the advantage of allowing the use of high resolution
methods that are difficult to develop on unstructured
grids. They also allow for efficient implementation on
vector computers without using gather-scatter operations
‘except at boundary cells. Some preliminary computa-
tional results using lower order boundary conditions are
presented.

1. Introduction

The construction of logically rectangular body-
fited grids for complicated geometries is notoriously
difficult. One alternative is to use an unstructured mesh,
so that the cell volumes are not derived by a smooth
mapping from a rectangular domain, as in [16] for exam-
ple. Another possibility is to simply use a Cartesian grid
over the entire flowfield. This introduces the difficulty
of imposing solid wall boundary conditions on a grid that
is not aligned with the body.

Nonetheless, there are several reasons to prefer the
Cartesian grid approach, in addition to the ease of grid
generation. First, it allows the use of higher order accu-
rate shock capturing methods that are difficult to achieve
on an unstructured mesh with no coordinate directions.
A Cartesian grid integrator is highly vectorizable.
Gather-scatter type vector operations necd to be pe-
formed only in a lower dimensional region, and not over
the entire flowfield. The basic solver on a Cartesian
mesh is also simpler than on a body-fitted mesh, since
there are no metric terms. Finally, there is some evi-

Copyright © American Institute of Aeronautics and
pxrs‘tronautics. Inc., 1989. All rights reserved.

Randall J. LeVeque
Mathematics Department
University of Washington

Scattle, WA 98195

dence [20] that for strong shock calculations an unstruc-
tured mesh has larger phase errors, and thus poorer
shock-capturing abilities, than structured grids.

There are also several difficulties in using Carte-
sian grids. The main difficulty is the small cell problem.
Arbitrarily small cells arise at the edge of the domain
where the grid intersects a body. Stable, accurate and
conservative difference schemes are needed for these
cells. We would like the time step for a time-accuraie
computation to be based on the cell volume of the regu-
lar cells away from the body, and not be restricted by
small cells at the boundary. The time step appropriatc for
the regular grid cells can give a Courant number that is
orders of magnitude larger than 1 for the smaller, irregu-
lar cells. This will lead to stability problems with stan-
dard explicit methods. In this work, we use an approach
based on wave propagation that essentially increases the
size of the stencil near these small cells and maintains
stability for arbitrary time steps. This large time step
approach was studied in one space dimension in [13],
and has been applied in the present context of small
boundary cells in {14,15].

Another problem with Cartesian grids is one of
accuracy. Grid stretching, used in body-fitted grids to
cluster the grid points in regions where they arc needed,
cannot be used. Moreover, since the grid is not aligned
with the boundary, a loss of resolution may occur near
the boundary. To improve the accuracy we use an adap-
live mesh refinement algorithm developed in (8]. Rec-
tangular refined grids are superimposed on the coarse
grid, so that the efficiency of the integrator on each grid
is maintained. The time step is refined along with the
mesh width on the fine grids, so that the CFL condition is
maintained while allowing larger time steps on the
coarser grids. This further concentrates the computa-
tional work where it is needed.

Cartesian mesh methods have received increased
attention recently. Cariesian grids were used in {19] to
solve the full potential equations. This was extended to
the Euler equations in two space dimensions in [11], and
to three dimensions in [12). Cartesian grids have also
been used in conjunction with an implicit, flux-vector
split method for the Euler equations {10]. These calcula-
tions, however, suffer from the lack of resolution of a
Cartesian mesh; none of the calculations used a local
mesh refinement algorithm. The use of a global, tensor
product grid to concentrate grid lines near the leading
edge of an airfoil, for example, can be very wasteful. In
those computations, the small, irregular cells near the
body were merged into their neighboring cells to create a
cell that was large enough to satisfy a stability constraint.
This procedure loses resolution,

In the next section, we describe our overall com-
putational method, including the organization of the cal-
culation and the boundary representation. Section 3
describes the large time step method and the implemen-
tation of the solid wall boundary conditions. Section 4
describes the mesh refinement algorithm. In Section §
we show applications of our method to the inviscid Euler
equations in two geometries: shocked flow around two
cylinders, and a curved channel calculation.

2. Algorithm and Data Structures

We consider the Euler equations in two space
dirhensions,

U+FU),+GU),=0,

where
P pu pv
U= pu , F()= puz +p , G(U)= puv
p puv pv2+p
pE puk + up pvE + vp
and

p = (-DPE-p(u?+v?)/2)).

The boundary of a solid object is approximated by
piecewise linear segments at shown in Figure 1a. We
assume that the boundary cuts through each cell at most
once, so that the resulting irregular cell is a polygon with
at most five sides. We use a finite volume method, with
U,.; representing the cell average of the vector of con-
served quantities in cell (i, /), i.e.

1
(S .
Ui A [ag.jy Vi) dx dy,
where A, ; is the area of the cell. For regular cells, away

from the boundary, A, ; = AxAy, but A, ; may be orders of
magnitude smaller for cells on the boundary.

All grid cells are indexed using the rectangular
Cartesian structure. Additional information about the
irregular cells is kept in a linked list data structure that is
easily traversed in implementing the boundary condi-
tions. Necessary information includes the cell area and
list of vertices for each irregular cell, as well as a pointer
1o its location in the Cartesian grid. In the other direc-
tion, a two dimensional integer array indicates whether a
Cartesian cell is regular, and for irregular cells contains a
pointer to the corresponding location in the linked list.
When grid refinement is used there may be several rec-
tangular grids, each with its own solution storage and
irregular points list.

(ij+1)

1) | G
/
/

/A
AN

/ // ///\

()
G j+12
K R P
G,j-12
(b)

Figure 1 (a) a Cartesian grid. The shaded region
represents a solid body. (b) Blowup of cell (i,j)
showing the fluxes.

In each time step, the cell values are updated by
differencing fluxes at the cell sides, as illustrated in Fig-
ure 1b, The updating formula is

vt =uy; - TN_ (Fiovaj = Ficinng (1)
i/
+Gijan = Gijan + Hyl.
boundary of the cell. For example, with Godunov's

method we would obtain F;,,,2; by solving a Riemann
problem u, + f (4), = O with left and right states U; ¥ and
Ui,j to determine the correct intermediate state u . We
then set Fiyi/zj = hisisa;f (u*), where hiyy2; is the
length of the interface between cells (i,j) and (i+1,j).
For regular cells this length is just Ay. Similarly, G; ;1,2
is the flux per unit time through the top of the cell.
Finally, H, ; is the flux per unit time through the irregular
side of the cell, which represents the solid wall boundary
of the fluid domain. In regular cells, H;;=0. With
higher order Godunov schemes such as MUSCL, the left
and right states are modified using slope information to
achieve second order accuracy.

In irregular cells there are two difficulties with this
approach. First, the neighboring cell values needed to
define appropriate slopes may not be present. This is
currently handled by setting the slopes to zero, so that
the flux reduces to the Godunov flux at these interfaces.
Improvements to this algorithm are currently under
study.

Even with first order fluxes, there is still a stability
problem. Use of these fluxes in updating formula (1)
will give instabilities in cells where A, ; is very small
relative to Az. A wave propagation interpretation of this
is given in Section 3, where we present a way to modify
the fluxes to account for the reflection of waves at the
boundary and obtain a much more stable algorithm.
First we present an outline of the overall algorithm.

Step 1: Initial flux computation. In the first pass,
fluxes at all cell boundaries are computed assuming that
the grid is regular, even at interfaces where both neigh-
boring cells lie outside of the actual fluid domain. This
is done for ease of vectorization, but the calculations out-
side the domain will have no influence on the final solu-
tion. Also, the interface lengths are always assumed to
be Ax or Ay in computing the flux per unit time, regard-
less of the true length of the side. This will be corrected
in step 2 as required.

Step 2: Flux Modification Near the Boundary. In
the second step, we march around the solid boundary of
the fluid domain, modifying the fluxes of the irregular
cells. First we adjust the fluxes F and G at each interface
to incorporate the correct length rather than the standard
length Ax or Ay. Next, we modify the fluxes 1o improve
the stability of the small cells and incorporate the solid
wall boundary conditions. This will be described in
more detail in the next section. Finally, we calculate the
fluxes H;; at the irregular side of each boundary cell.
This is also described in section 3.

Step 3: Updating U, ;. The grid values U;; are
now updated using the flux differencing formula (1).

Step 4: Smoothing at the Boundary. Although the
flux modification of Step 2 is intended to give stability

for arbitrarily small cells, in practice very small cells still
cause difficulties in some computations. The exact
causes of this are currently under study. In the present
code, stability is restored by means of an averaging pro-
cess. In very small cells (those with area less than 3% of
the regular cell size, typically), the value of UZ}' is
replaced by a weighted average of the original valuc and
the value in one or more neighboring cells. The choice of
cells depends on the local geometry. The value in the
neighboring cell(s) is also modified in such a way that
conservation is maintained. The weights used are pro-
portional to the cell areas and hence the value in the
small cell is replaced by a value that is essentially equal
to that of the cell’s primary neighbor (or a weighted
averaged of two or three neighboring cells). This pro-
cedure has been found to eliminate any remaining insta-
bilities. This algorithm is similar to the flux redistribution
algorithm in {9).

3. Boundary Conditions and Flux Modification

For irregular cells at the boundary, the fluxcs that
are calculated in the first stage of the algorithm arc sim-
ply the Godunov fluxes obtained by solving the Ricmann
problem between this cell and each neighbor. In order to
understand how these fluxes should be modified for
small cells, we first consider Godunov’'s method on a
regular grid cell. The method can be interpreted in the
following way: Solve the Riemann problem at each
interface to obtain waves propagating away from the
interface. For each wave that propagates into the cell, lct
AU represent the jump in the conserved quantities across
the wave. Suppose that in time As this wave sweeps
through a certain fraction o of the cell. Then the ccli
average U, ; is updated by the quantity cAU. Noic that
the CFL condition requires o < 1, and that « is the ratio
of the area swept out by the wave to the total cell area
(see Figure 2). The wave shown in Figure 2 propagates
with speed s >0 from the left side of the cell, and so

oo SMiBy _ sMt

Now consider the same wave but suppose that the
cell in question is an irregular cell as shown in Figure 3a.
We now have a=s5At/A;; > 1, and updating U;; by
o AU would lead to instability. However, an alternative
approach that is physically more reasonable is 10 update
U,; by only 1.0-AU, since the wave overlaps the entire
cell, and then to update cells further to the right by the
remainder of the wave (a~1)AU. This is the basis of the
large time step method originally described in [13). In
the present context however, there are no cells to the
right. Instead, there is a solid wall boundary, off which
the wave should reflect. This is illustrated in Figure 3b.
The portion of the wave that lies outside the domain is

Ay

sAL

Figure 2 The wave containing the jump in con-
served quantities travels to the right a distance sA?
away from the interface.

reflected normal to the boundary segment of this cell.
Linearization of the solid wall boundary conditions sug-
gests that the reflected wave should carry a jump AU,
which has the same jump as AU in density, pressure and
tangential velocity, but which has the jump in normal
velocity negated. (Normal and tangential refer w0 the
orientation of the solid wall boundary).

This reflected wave overlaps some fraction B<1 of
the cell, and so U;; is further updated by BAU. In addi-
tion, the reflected wave may overlap neighboring cells,
and each of these is also updated by the fraction of the
cell overlapped multiplied by AU. In Figure 3b, three
neighboring cells are affected by the reflected wave. This
is the maximum number possible, so the amount of com-
putational work required is bounded.

As just described, the waves are used to update
cell values directly. In the actual implementation, the
waves are used to update the fluxes at the cell interfaces
by calculating the flux through each interface due to the
wave. This makes these boundary conditions easier to
use in conjunction with an arbitrary flux differencing
method away from the boundaries. The flux at each
interface is modified by any wave that crosses the inter-
face. For example, the reflected wave in Figure 3b
crosses four interfaces and would modify the flux at each
of these interfaces.

Finally, we must calculate the flux # ; at the solid
wall boundary itself. The basic flux is computed by solv-
ing a Riemann problem at the wall with data given by
U;, and ;. The vector Uj; agrees with U, ; in density,
pressure and tangential velocity but again has the normal
velocity negated. This flux is then modified by any wave
that reflects off the wall, once by the outgoing flux of the
wave AU and then again by the incoming flux of the
reflected wave.

(a)

VS

Figure 3 (a) The wave completely sweeps through
the small boundary cell. (b) The wave reflects off
the boundary back into the domain.

4, Mesh Refinement

The adaptive mesh refinement algorithm (hen-
ceforth AMR) is based on the use of uniform, local grid
refinements superimposed on an underlying coarse grid.
These embedded grid refinements can be recursively
nested to maintain a fixed level of accuracy in the calcu-
lation. Unlike other embedded grid refinement methods,
(e.g (18]), in this method the grid cells requiring
refinement in each level are grouped together into rec-
tangular blocks which ¢ uniformly refined. This means
that some coarse grid cells may be unnecessarily refined,
but has the advantage that all grids are uniform and rec-
tangular. This allows us to maintain vectorization
without using gather/scater operations. It also allows
for a simple user interface, since a finite difference
scheme can be written for a uniform rectangular grid
without concern for the connectivity of each cell. The
use of fine grids instead of unstructured grid points also
reduces the storage overhead, which is on a per grid
basis for our method, rather than the overhead per cell
found in unstructured mesh calculations. The additional
complications introduced by this approach occur at the
interfaces of the fine and coarse grids (see below).

In addition to refining the spatial grid for time-
accurate computations we use a smaller time step on the
fine grids as well. This keeps the mesh ratio of time step
to space siep the same on all grids, and so the same
explicit finite difference scheme is stable on 3all grids.
The computational work is thus further concentrated on
the fine grids, where it should be. In contrast, some
adaptive methods for transient flows use the same time
step for the whole mesh [16,17]). This can be less
efficient, since the resulting Courant number may be far
smaller than necessary over the unrefined portion of the
grid.

AMR uses an automatic error estimation pro-
cedure, based on Richardson extrapolation, to determine
the regions in the domain where the resolution in the
solution is insufficient, These coarse grid cells are
"flagged” as necding refinement. In addition, the iregu-
lar grid cells at solid bodies should be flagged as needing
refinement if the geometry of the boundary is under-
resolved. An automatic grid generation algorithm
groups these flagged cells into rectangular grid paiches.
We have developed heuristic procedures that are quite
successful at this type of grid generation [4]. We &y to
balance the conflicting goals of minimizing the number
of fine grids and minimizing the area that is unneces-
sarily refined.

The time accurate integration algorithm proceeds
by taking one step on the coarsest grid, and as many
steps as necessary on the finer level grids until they
catch up 10 the coarse grid time. If there are several lev-
els of fine grids, this is applied recursively. At this point
the grids are advanced independently of each other,
except that fine grids require boundary values from adja-
cent fine grids or interpolated from the coarser grids.
For a five point stencil, a fine grid will need 2 points all
around the outside of the grid in order 1o advance the
solution one step. If there is an adjacent fine grid, it can
supply the missing points. Otherwise, these so-called
dummy points are obtained using bilinear interpolation
in space and linear interpolation in time from the coarse
grid.

Since we will be computing discontinuous solu-
tions of hyperbolic conservation laws, the adaptive mesh
refinement algorithm needs 1o be conservative. This is
complicated by the use of different time steps on the dif-
ferent grids. Conservation is ensured in three different
parts of the mesh refinement algorithm. When two adja-
cent levels of grids are at same time, the fine grid
updates the coarse grid, performing the conservative
averaging procedure

’ r~l r=1

Ur.' 2 z Uﬂ’qluo

mel asl
where r is the mesh refinement ra‘io, for each coarse cell

(i.J) containing a fine grid cell (k.!) in the lower left
comer. If a fine grid is thcn removed, the total mass in
the domain is conserved. Sccondly, after every integra-
tion step the solution is post-processed at all coarse grid
points adjacent to a fine grid. The initial coarsec flux
(computed ignoring the fine grids) is subtracted, and the
sum of the fine grid fluxes over space and time is added
in its place. Thirdly, we use conservative interpolation
procedures to initialize the solution when a fine grid is
created. A more complcte description of the algorithm
for time-dependent pdes is in {6).

§. Numerical Results

We illustrate the method on two time-dependent
problems involving shock waves. In the first example
we compute flow around two cylinders. An incident
shock travels at Mach number 2.81. One cylinder is
slightly ahead of the other. This leads to an intcresting
pattern of wave reflections between the two cylinders. In
addition there is a reflected bow shock, and complicatcd
wave structures behind the cylinders after the shocks
pass by. All of these regions use the adaptive refincment
as the solution develops. Figure 4 shows the incident
shock with the location of the refined grids indicated.
The initial coarse grid is 64 by 64. Two levels of grids
are used, with a refinement factor of 4. Figure S shows
density contours of the solution at later stages of the
simulation.

DENSITY. TINE = 0 @00 COMPOSITE

Figure 4 Density contours and grid locations at in-
itial time for shock impinging on two cylinders.

The second example we consider is a Mach 2.2
shock travelling in a channel with a 90 degree bend.
This has previously been studied in (1,21). We use a
very coarse initial grid, since much of the initial rec-

OENSITY. TIME = 8,172 COMPOSITE

Figure S Density contours at later times.

tangular grid is outside the computational domain. We
use two additional levels of refinement by a factor of 4 in
each case in order to obtain good resolution of the shock
and induced wave pattem. Figure 6 shows density con-
tours when the shock has passed most of the way
through the channel. In this figure, the location of the
three levels of refined grids is indicated on the contour
plots.

6. Conclusions

This work demonstrates the feasibility of an adap-
tive Cartesian grid approach for fluid problems in com-
plicated geometries. Several aspects of this approach are
still under development. We would like to improve the
boundary scheme to make it second order along with the

DENSITY TIME = Q. 428 COMPOSITE

—— T

—

/

el

yrsrevii

7

\

i/

NS
NS
=

NN

%

] P

Figure 6 Density contours for shock in a channel
with 90 degree bend.

interior scheme. We also hope to eliminate the smooth-
ing step now used to insure stability in the very small
cells.

We also plan 10 include an acceleration procedure
for steady state calculations. For nested Cartesian grids
multigrid is particularly attractive, since the data struc-
tures and grid transfer operations in the adaptive grid
refinement algorithm make up almost all of those nceded
in multigrid [5]. Local grid refinement and multigrid
have already been combined using a logically rectanguy-
lar body-fitted grid in [7].

An important consideration is whether these tech-
niques will extend to Navier-Stokes calculations. For
problems with boundary layers, it is usually desirablc to
use body-fitted grids and refine hcavily in the direction
normal to the boundary. Refining Cartesian grid cells
near such a boundary may be highly inefficient. In such
cases a component grid approach may be useful, in
which there are several grids with distinct coordinate
systems, For example, there may be a thin body-fiued
boundary layer region in addition to an underlying Carte-
sian grid. These multiple components will overlap in an
arbitrary way, creating small irregular cells as in the
Cartesian mesh method above. Again, stable and conser-
vative difference equations are needed t0 compute the
flow at these mesh junctions. The techniques used here
should be directly applicable to this situation. Such an
approach has previously been considered by others, e.g.
[2,3]. However, these previous efforts did not treat the
interface conditions between the different grids in an
accurate or conservalive way.

Acknowledgements

We thank Jeff Saltzman for the use of his high
order Godunov integrator. The first author’s work was
supported in part by DOE Contract No.
DEAC(0276ER03077-V, by the AFOSR under Contract
No. 86-0148. The authors were supported by NSF
Presidential Young Investigator Awarcs ASC-8858101
and DMS-8657319.

6. References

(1] T. Aki, "A Numerical Study of Shock Propagation in
Channels with 90 Degree Bends", National Aerospace
Laboratory Technical Report, Tokyo, Japan, 1987.

[2] E. Aua, "Component-Adaptive Grid Interfacing”,
AIAA Paper No. 81-0382. Proc. AIAA 19 Aerospace
Sciences Meeting, 1981.

[3] 1. Benek, J. Steger and F. Dougherty, "A Flexible
Grid Embedding Technique with Application to the
Euler Equations”, AIAA Paper No. 83-1944. Proc. 6"
Computational Fluid Dynamics Conference, Danvers,
Mass. July, 1983.

[4] M.J.Berger, "Data Structures for Adaptive Grid Gen-
eration”, SIAM J. Sci. Stat. Comp. 7, (1986), pp. 904-
916.

(51 M.J.Berger, "Adaptive Finite Difference Methods in
Fluid Dynamics”. Lecture series 1987-04 in Computa-
tional Fluid Dynamics at the von Karman Institute for
Fluid Dynamics, Rhode Saint Genese, Belgium, March,
1987.

(6] M. Berger and P. Colella, "Local Adaptive Mesh
Refinement for Shock Hydrodynamics”. To appear in J.
Comp. Phys.

{7} MJ. Berger and A. Jameson, "Automatic Adaptive
Grid Refinement for the Euler Equations”, AIAA J. 23,
(1985), pp. 561-568.

(8] M. Berger and J. Oliger, "Adaptive Mesh Refinement
for Hyperbolic Partial Differential Equations”, J. Comp.
Phys. 53 (1984), pp. 484-512.

(9] I. Chern and P. Colella. "A Conservative Front
Tracking Method for Hyperbolic Conservation Laws".
Submitted to J. Comp. Phys. UCRL-97200, July 1987.

(10] S. Choi and B. Grossman, "A Flux-Vector Split,
Finite-Volume Method for Euler's Equations on Non-
Mapped Grids”, AIAA Paper 88-0227, Proc. 26th
Acrospace Sciences Meeting, Reno, Nevada.

(11) D. Clarke, H. Hassan, and M. Salas, "Euler Calcula-
tions for Multiclement Airfoils Using Cartesian Grids,
AIAA Paper 85-0291, Jan. 1985.

(12] R. Gaffney, H. Hassan and M. Salas, "Euler Calcu-
lations for Wings Using Cartesian Grids”, AIAA Paper
87-0356, January 1987.

{131 RJ. LeVeque , "A Large Time Step Generalization
of Godunov’'s Method for Conservation Laws", SIAM J.
Num. Anal. 22 (1985), pp. 1051-1073.

(14] RJ. LeVeque, "High Resolution Finite Volume
Methods on Arbitrary Grids via Wave Propagation™, J.
Comp. Phys. 78 (1988), pp. 36-63.

(15] RJ. LeVeque, "Cartesian Grid Methods for Flow in
Irregular Regions”, in Numerical Methods for Fluid
Dynamics III, K.W. Morton and M.J. Baines, editors,
Clarendon Press (1988), pp. 375-382.

(16) Lohner, "Finite Elements in CFD: What Lies
Ahead”. Proc. World Congress on Computational
Mechanics, Austin, Texas. Sept. 1986.

[17] J. Salizman and J. Brackbill, "Applications and
Generalizations of Variational Methods for Gencrating
Adaptive Meshes”, in Numerical Grid Generation, J.
Thompson, ed., North-Holland, 1982.

(18} Usab and Murman, "Embedded Mesh Solutions of
the Euler Equations Using a Multiple-grid Mcthod",
AIAA Paper 83-1946-CP, 6th AIAA Computational
Fluid Dynamics Conference, Danvers, Mass. July 1983.

[19] B. Wedan and J. South, "A Method for Solving the
Transonic Full-Potential Equations for General
Configurations”, Proc. AIAA Computational Fluid
Dynamics Conf., July 1983,

{20] P. Woodward, Proc. Nato Workshop in Astrophysi-
cal Radiation Hydrodynamics , Munich, W. Germany,
Nov. 1983. Also Lawrence Livermore Report UCRL-
90009, August, 1982, (unpublished).

[21] H. Yee, "Upwind and Symmetric Shock-Capturing
Schemes”, NASA Technical Memorandum 89464, May
1987.

